Please wait a minute...
浙江大学学报(工学版)
土木工程、交通工程     
复合氢氧化物改性沥青阻燃和路用性能
黄志义1, 武斌1, 康诚1, 朱凯2, 吴珂1
1. 浙江大学 建筑工程学院,浙江 杭州 310058;2. 中国计量学院 质量与安全工程学院,浙江 杭州 310018
Flame retardant and pavement performance of composite hydroxide modified asphalt
HUANG Zhi yi1, WU Bin1, KANG Cheng1, ZHU Kai2, WU Ke1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; 2. College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
 全文: PDF(712 KB)   HTML
摘要:

 将氢氧化铝(ATH)和氢氧化钙(HL)按质量比1∶1混合制得复合氢氧化物阻燃剂,采用热重、锥形量热仪和冻融劈裂等试验研究复合阻燃剂对沥青阻燃性能和路用性能的影响.结果表明,复合氢氧化物阻燃剂具有协同阻燃作用,较单一氢氧化物阻燃剂(ATH或HL)可以进一步延长沥青混合料的点燃时间,且降低平均热释放速率和CO产率的幅度更大;采用复合氢氧化物阻燃剂等量替代矿粉,可以有效地提升沥青混合料的高、低温性能和水稳定性.复合氢氧化物阻燃剂可以在更宽广的温度区间发挥阻燃作用,阻燃抑烟效果及路用性能俱佳,且性价比更高.

Abstract:

Composite hydroxide flame retardant was formed by mixing aluminium hydroxide (ATH) and calcium hydroxide (HL) with a mass ratio of 1∶1. The influence of composite flame retardant on flame retarding performance and road performance of asphalt was analyzed by using thermogravimetry, cone calorimeter,freeze thaw splitting test and etc. Results indicate that the composite hydroxide flame retardant has a synergistic flame retardant effect. The composite hydroxide flame retardant can further prolong the ignition time of asphalt mixture and reduce the average heat release rate and the extent of CO production rate than the single hydroxide flame retardants (ATH or HL). Replacing some mineral powder with the same amount of composite hydroxide flame retardant can effectively improve the high/low temperature and water stability performances of asphalt mixture. Composite hydroxide plays a role of flame retardant in a wider temperature range and has better effects on the flame retardant, smoke suppression and road performances. The composite flame retardant is more cost effective.

出版日期: 2016-03-31
:  U 416  
基金资助:

国家自然科学基金资助项目(51408542);浙江省自然科学基金资助项目(LY14E080014).

通讯作者: 吴珂, 男, 助理研究员. ORCID: 0000 0003 2313 3124.     E-mail: wuke@zju.edu.cn
作者简介: 黄志义(1957-), 男, 教授,博导, 从事交通隧道安全及沥青路面阻燃等的研究. ORCID: 0000 0003 2604 6931.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

黄志义, 武斌, 康诚, 朱凯, 吴珂. 复合氢氧化物改性沥青阻燃和路用性能[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.01.005.

HUANG Zhi yi, WU Bin, KANG Cheng, ZHU Kai, WU Ke. Flame retardant and pavement performance of composite hydroxide modified asphalt. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.01.005.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.01.005        http://www.zjujournals.com/eng/CN/Y2016/V50/I1/27

[1] ZHAO Jie wen, HUANG Xiao ming, XU Tao. Combustion mechanism of asphalt binder with TG MS technique based on components separation [J]. Construction and Building Materials, 2015, 80: 125-131.
[2] 黄志义, 吴珂. 长大隧道沥青混凝土路面的防火安全性能[J]. 浙江大学学报: 工学版, 2007, 41(8): 1427-1428.
HUANG Zhi yi , WU Ke. Fire safety of long tunnel asphalt concrete pavement [J]. Journal of Zhejiang University: Engineering Science, 2007, 41(8): 1427-1428.
[3] WU Ke, ZHU Kai, HAN Jun, et al. Non isothermal kinetics of styrene butadiene styrene asphalt combustion [J]. Chinese Physics B, 2013, 22(6): 68801.
[4] LIANG Yong sheng, YU Jian ying, FENG Zheng gang, et al. Flammability and thermal properties of bitumen with aluminium trihydroxide and expanded vermiculite [J]. Construction and Building Materials, 2013, 48: 1114-1119.
[5] QIN Xian tao, ZHU Si yue, CHEN Shuan fa, et al. The mechanism of flame and smoke retardancy of asphalt mortar containing composite flame retardant material [J]. Construction and Building Materials, 2013, 41: 852-856.
[6] 魏建国, 谢成, 付其林. 阻燃剂对沥青与沥青混合料性能的影响[J]. 中国公路学报, 2013, 26(6): 30-37.
WEI Jian guo, XIE Cheng, FU Qi lin. Influence of flame retardant on technical performances of asphalt and asphalt mixture [J]. China Journal of Highway and Transport, 2013, 26(6): 30-37.
[7] BONATI A, MERUSI F, POLACCO G, et al. Ignitability and thermal stability of asphalt binders and mastics for flexible pavements in highway tunnels [J]. Construction and Building Materials, 2012, 37: 660-668.
[8] BONATI A, MERUSI F, BOCHICCHIO G, et al. Effect of nanoclay and conventional flame retardants on asphalt mixtures fire reaction [J]. Construction and Building Materials, 2013, 47: 990-1000.
[9] XU Tao, HUANG Xiao ming, ZHAO Yong li. Investigation into the properties of asphalt mixtures containing magnesium hydroxide flame retardant [J]. Fire Safety Journal, 2011, 46(6): 330-334.
[10] XU Tao, WANG Hong chang, HUANG Xiao ming, et al. Inhibitory action of flame retardant on the dynamic evolution of asphalt pyrolysis volatiles [J]. Fuel, 2013, 105: 757-763.
[11] LESUEUR D, PETIT J E L, RITTER H. The mechanisms of hydrated lime modification of asphalt mixtures: a state of the art review [J]. Road Materials and Pavement Design, 2013, 14(1): 1-16.
[12] LITTLE D N, PETERSEN J C. Unique effects of hydrated lime filler on the performance related properties of asphalt cements: physical and chemical interactions revisited [J]. Journal of Materials in Civil Engineering, 2005, 17(2): 207-218.
[13] 朱凯, 黄志义, 吴珂, 等. 消石灰对沥青阻燃性能的影响[J]. 浙江大学学报: 工学版, 2015, 49(5): 963-968.
ZHU Kai, HUANG Zhi yi, WU Ke, et al. Hydrated lime modification of asphalt mixtures with improved fire performance [J]. Journal of Zhejiang University: Engineering Science, 2015, 49(5): 963-968.
[14] 丁庆军, 刘新权, 沈凡, 等. ATH 沥青阻燃体系试验及机理分析[J]. 中国公路学报, 2008, 21(5): 10-14.
DING Qing jun, LIU Xin quan, SHEN Fan, et al. Test and mechanism analysis of ATH asphalt flame retarding system [J]. China Journal of Highway and Transport, 2008, 21(5): 10-14.
[15] HUGGETT C. Estimation of rate of heat release by means of oxygen consumption measurements [J]. Fire and Materials, 1980, 4(2): 61-65.
[16] 黄志义,胡晓宇,王金昌,等. 高黏沥青中高温感温性评价方法的适用性[J]. 浙江大学学报:工学版, 2015, 49(8): 1448-1454.
HUANG Zhi yi, HU Xiao yu, WANG Jin chang, et al. Applicability of middle and high temperature susceptibility evaluation method for high viscosity asphalt [J]. Journal of Zhejiang University: Engineering Science, 2015, 49(8): 1448-1454.
[17] CHEN Jian shiuh, PENG Chun hsiang. Analyses of tensile failure properties of asphalt mineral filler mastics [J]. Journal of Materials in Civil Engineering, 1998, 10(4): 256-262.

[1] 陈德, 韩森, 苏谦, 韩霄. 基于抗滑降噪性能的沥青路面表面构造评价指标[J]. 浙江大学学报(工学版), 2017, 51(5): 896-903.
[2] 黄志义, 胡晓宇, 王金昌, 章俊屾. 高黏沥青中高温感温性评价方法的适用性[J]. 浙江大学学报(工学版), 2015, 49(8): 1448-1454.
[3] 朱凯,黄志义,吴珂,武斌,张欣,张驰. 消石灰对沥青阻燃性能的影响[J]. 浙江大学学报(工学版), 2015, 49(5): 963-968.
[4] 葛倩如,黄志义,王金昌,张晨旭. BFRP连续配筋复合式路面配筋设计[J]. 浙江大学学报(工学版), 2015, 49(1): 186-192.
[5] 林骋, 王金昌, 胡蓉. 考虑水稳碎石性能劣化的沥青路面变形[J]. 浙江大学学报(工学版), 2014, 48(12): 2238-2245.
[6] 葛倩如,黄志义,王金昌,张晨旭. BFRP连续配筋复合式路面配筋设计[J]. 浙江大学学报(工学版), 2014, 48(8): 1-7.
[7] 白桃, 黄晓明, 李昶. 考虑土体参数空间变异性的边坡稳定性研究[J]. J4, 2013, 47(12): 2221-2226.
[8] 颜可珍, 周志雄. 基于非线性模糊法的水泥路面性能评价[J]. J4, 2013, 47(8): 1379-1383.
[9] 彭勇,徐小剑. 集料分布对沥青混合料劈裂强度影响数值分析[J]. J4, 2013, 47(7): 1186-1191.
[10] 张坤, 李东庆, 李建宇, 童刚强. 青藏高等级公路通风管试验路基降温效果[J]. J4, 2010, 44(10): 1845-1850.