Please wait a minute...
浙江大学学报(工学版)
自动化技术、信息技术     
阈值随机共振及其在低质量浓度气体检测中的应用
童基均1, 张光磊1, 蔡强2, 简锦明3,郭希山3
1. 浙江理工大学 信息学院,浙江 杭州 310018;2.浙江清华长三角研究院 科学仪器研究室,浙江 嘉兴 314006;3.浙江大学 生物系统工程与食品科学学院,浙江 杭州 310058
Application of threshold stochastic resonance in low concentration gas detecting
TONG Ji-jun1, ZHANG Guang-lei1, CAI Qiang2, JIAN Jin-ming3, GUO Xi-shan3
1. School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2. Scientific Instrument Laboratory, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China; 3. Department of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
 全文: PDF(759 KB)   HTML
摘要:

提出利用阈值随机共振系统检测低质量浓度气体的方法.对传感器检测信号进行预处理以满足随机共振系统的要求,输入单阈值检测器,采用反映系统输入输出信号之间相关性的互相关系数作为阈值随机共振的表征.对系统的阈值参数进行优化,对最大互相关系数和气体质量浓度的相关性进行回归分析.实验结果表明,在该类系统中,不但存在阈值随机共振,而且随着气体质量浓度的增加最大互相关系数增加,采用最大互相关系数可以进行气体质量浓度的检测,最低检测限可以达到μg/L级别.

Abstract:

A low concentration gas detecting method based on threshold stochastic resonance (SR) was proposed. The raw data was pre-processed to satisfy the requirements of SR system and put into the “one level threshold detector”. Then the cross-correlation coefficient, which reflected the similarities between the input signal and the output signal, was used to evaluate the performance of SR system. Then the threshold parameters were optimized and the relationship between the maximum cross-correlation coefficient and gas mass concentration was analyzed. Experimental results show that threshold SR can be observed and the maximum cross-correlation coefficient increases with the increase of gas mass concentration. The maximum cross-correlation coefficient can be used to detect the gas mass concentration and the detectable limit can be μg/L level.

出版日期: 2018-06-06
:  TN 911  
基金资助:

国家自然科学基金资助项目(31200746);国家重大科学仪器设备开发专项资助项目(2012YQ15008705);浙江理工大学“521人才培养计划”资助项目

作者简介: 童基均(1977-), 男,副教授,从事传感器及检测技术、生物医学信息处理的研究. E-mail:jijuntong@zstu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

童基均, 张光磊, 蔡强, 简锦明,郭希山. 阈值随机共振及其在低质量浓度气体检测中的应用[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.01.003.

TONG Ji-jun, ZHANG Guang-lei, CAI Qiang, JIAN Jin-ming, GUO Xi-shan. Application of threshold stochastic resonance in low concentration gas detecting. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.01.003.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.01.003        http://www.zjujournals.com/eng/CN/Y2015/V49/I1/15

[1] DUTTA R, DAS A, STOCKS N G. Stochastic resonance-based electronic nose: a novel way to classify bacteria [J]. Sensors and Actuators B, 2006, 115(1):17-27.
[2] BENZI R, SUTERA A, VULPIANI A. The mechanism of stochastic resonance [J]. Journal of Physics A: Mathematical and General, 1981, 14(11): 453-457.
[3] STOCKS N G. Suprathreshold stochastic resonance in multilevel threshold systems [J]. Physical Review Letters, 2000, 84(11): 2310-2314.
[4] MOSS F, WARD L M, SANNITA W G. Stochastic resonance and sensory information processing: a tutorial and review of application [J]. Clinical Neurophysiology, 2004, 115(2): 267-281.
[5] STOCKS N G. Suprathreshold stochastic resonance: an exact result for uniformly distributed signal and noise [J]. Physics Letters A, 2001, 279(5): 308-312.
[6] ROUSSEAU D, FRANCOIS C B. Suprathreshold stochastic resonance and signal-to-noise ratio improvement in arrays of comparators [J]. Physics Letters A, 2004, 321(5/6): 280-290.
[7] COLLINS J J, CHOW C C, IMHOFF T T. Aperiodic stochastic resonance in excitable systems [J]. Physical Review E, 1995, 52(4): 3321-3324.
[8] GUO Y f, TAN J G. Suprathreshold stochastic resonance in multilevel threshold system driven by multiplicative and additive noises [J]. Communication in Nonlinear Science and Numerical Simulation, 2013, 18 (10): 2852-2858.
[9] BATTYAE W, ANEJAB V P, ROEL P A. Evaluation and improvement of ammonia emissions inventories [J]. Atmospheric Environment, 2003, 37(27): 3873-3883.
[10] PERRINO C, CATRAMBONE M, ALLEGRI I, et al. Gaseous ammonia in the urban area of Rome, Italy and its relations hip with traffic emissions [J]. Atmospheric Environment, 2002, 36(34): 5385-5394.
[11] STOCKS N G. Information transmission in parallel arrays of threshold elements: suprathreshold stochastic resonance [J]. Physical Review E, 2001, 63(4): 19.
[12] DAS A, STOCKS N G, HINES E L. Enhanced coding for exponentially distributed signals using suprathreshold stochastic resonance [J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(1): 223-232.
[13] 吴莉莉,惠国华,郭淼,等. 基于随机共振的气敏传感器阵列信号的识别研究[J]. 传感技术学报, 2009, 22(5): 664-668.
WU Li-li, HUI Guo-hua, GUO Miao, et al. Study of the gas sensor array data classified based on stochastic resonance [J].Chinese Journal of Sensors and Actuators, 2009, 22(5): 664-668.
[14] JIAN J M, GUO X S, CAI Q, et al. Oxygen plasma functionalized Pedot/pss-swcnts thin film deposited by electrophoresis for gas sensing [C]∥ Solid-State Sensors, Actuators and Microsystems Conference. New York: IEEE, 2011, 16: 2710-2713.
[15] 简锦明, 蔡强, 郭希山, 等. 基于介电电泳组装技术的Pedot/pss-swcnts气体传感器的研究[J]. 真空电子技术, 2013(02): 14-18.
JIAN Jin-ming, CAI Qiang, GUO Xi-shan, et al. Pedot/pss-swcnts gas sensor based on dielectrophoretic assembly technology [J]. Vacuum Electronics, 2013(02): 14-18.

[1] 吴晨曦, 张旻, 王可人. 基于二级嵌套阵列的宽频段欠定波达方向估计[J]. 浙江大学学报(工学版), 2017, 51(5): 1016-1023.
[2] 谢罗峰, 徐慧宁, 黄沁元, 赵越, 殷国富. 应用双树复小波包和NCA-LSSVM检测磁瓦内部缺陷[J]. 浙江大学学报(工学版), 2017, 51(1): 184-191.
[3] 王志, 朱世强, 卜琰, 郭振民. 改进导向滤波器立体匹配算法[J]. 浙江大学学报(工学版), 2016, 50(12): 2262-2269.
[4] 于慧敏, 曾雄. 结合排序向量SVM的视频跟踪[J]. 浙江大学学报(工学版), 2015, 49(6): 1015-1021.
[5] 陈阔, 冯华君, 徐之海, 李奇, 陈跃庭. 细节保持的快速曝光融合[J]. 浙江大学学报(工学版), 2015, 49(6): 1048-1054.
[6] 朱株,刘济林. 基于马尔科夫随机场的三维激光雷达路面实时分割[J]. 浙江大学学报(工学版), 2015, 49(3): 464-469.
[7] 江燊煜,陈阔,徐之海,冯华君,李奇,陈跃庭. 基于曝光适度评价的多曝光图像融合方法[J]. 浙江大学学报(工学版), 2015, 49(3): 470-475.
[8] 李江,赵雅琼,包晔华. 基于混沌和替代数据法的中风病人声音分析[J]. 浙江大学学报(工学版), 2015, 49(1): 36-41.
[9] 吴鹏洲,于慧敏,曾雄. 基于正则化风险最小化的目标计数[J]. 浙江大学学报(工学版), 2014, 48(7): 1226-1233.
[10] 潘能杰,于慧敏. 边缘加强型的彩色空间最稳极值区域[J]. 浙江大学学报(工学版), 2014, 48(7): 1241-1247.
[11] 岳克强, 孙玲玲, 游彬, 楼立恒. 基于欠定盲分离的并行识别防碰撞算法[J]. 浙江大学学报(工学版), 2014, 48(5): 865-870.
[12] 项楠, 赵航芳, 宫先仪. 非寻复域状态-空间滤波[J]. J4, 2014, 48(4): 727-733.
[13] 杨力, 朱株, 刘济林. 一种嵌入式汽车鸟瞰全景图拼接算法[J]. J4, 2014, 48(2): 292-296.
[14] 刘凤霞, 潘翔, 宫先仪. 螺旋线阵匹配场三维定位[J]. J4, 2013, 47(1): 62-69.
[15] 刘志坤, 刘忠, 付学志, 宁小玲. 改进的变步长自适应滤波及Eckart加权抑噪算法[J]. J4, 2012, 46(6): 1014-1020.