Please wait a minute...
浙江大学学报(工学版)
计算机科学技术     
城市复杂环境下基于三维激光雷达实时车辆检测
程健1,2, 项志宇1,2, 于海滨3, 刘济林1,2
1. 浙江大学 信息与电子工程学系,浙江 杭州 310027;2. 浙江省综合信息网重点实验室,浙江 杭州 310027; 3. 杭州电子科技大学 电子信息学院,浙江 杭州 310018
Real-time vehicle detection using 3D lidar under complex urban environment
CHENG Jian1,2, XIANG Zhi-yu1,2,YU Hai-bin3, LIU Ji-lin1,2
1.Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; 2. Zhejiang Provincial Key Laboratory of Information Network Technology, Hangzhou 310027, China; 3. School of Electronic and Information, Hangzhou Dianzi University, Hangzhou 310018, China
 全文: PDF(1507 KB)   HTML
摘要:

针对目前车辆检测准确性不高的问题,提出一种在城市复杂环境下单帧准确实时检测静止或运动车辆的算法.车辆检测系统采用三维激光雷达点云和二维栅格相结合,其中障碍聚类和障碍块轮廓在二维栅格地图上提取,而障碍检测和车辆检测在三维点云数据上处理.检测准确性的高低主要取决于所选的特征是否具有很好的区分性.针对几何形状相似难以区分和物体遮挡等问题,采用3种特征描述:反射强度概率分布、纵向高度轮廓分布和位置姿态相关特征,并利用支持向量机(SVM)训练分类器实现车辆的实时检测.实验中比较和分析了不同单特征和综合特征的检测性能,结果表明:自主车在城市环境下能以每帧200 ms实时准确地检测环境中的车辆.

Abstract:

In order to improve the vehicle detection performance, a real-time algorithm to accurately detect static or dynamic vehicle in a single  frame under complex urban environment was presented. The system combines 3D point clouds and 2D grid map, i.e., obstacle segmentation with  contour extracting in 2D grid map and obstacle and vehicle detection in 3D point clouds. The detecting performance mainly depends on the designed features which should  have obvious distinguishing characteristics.  To solve the difficulties in distinguishing  geometry similar objects and handle occlusion issues, three novel features, i.e., intensity reflection probability distribution, lengthways contour in height, and position-related features were proposed. Finally a support vector machine (SVM) classifier was used to realize real-time detection.  The comparison of detecting performance from different features and combined features was analyzed as well.  Experiments under real urban environment show that  the algorithm can stably detect vehicles within 200 ms per frame, verified the robustness of the proposed method.

出版日期: 2014-12-01
:  TP 391.4  
通讯作者: 项志宇,男,副教授     E-mail: xiangzy@zju.edu.cn
作者简介: 程健(1988—),男,硕士生,主要从事机器视觉研究.E-mail:21131083@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

程健, 项志宇, 于海滨, 刘济林. 城市复杂环境下基于三维激光雷达实时车辆检测[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.12.001.

CHENG Jian, XIANG Zhi-yu,YU Hai-bin, LIU Ji-lin. Real-time vehicle detection using 3D lidar under complex urban environment. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.12.001.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.12.001        http://www.zjujournals.com/eng/CN/Y2014/V48/I12/2101

[1] LUETTEL T, HIMMELSBACH M, WUENSCHE H J. Autonomous ground vehicles—concepts and a path to the future [J]. Proceedings of the IEEE, 2012, 100(13): 1831-1839.
[2] MONTEMERLO M, BECKER J, BHAT S, et al. Junior: The stanford entry in the urban challenge [J]. Journal of Field Robotics, 2008, 25(9): 569-597.
[3] ZHAO H, ZHANG Q, CHIBA M, et al. Moving object classification using horizontal laser scan data [C]∥ Robotics and Automation, 2009. ICRA′09. IEEE International Conference on. Kobe, Japan: IEEE, 2009: 2424-2430.
[4] NAVARRO-SERMENT L E, MERTZ C, HEBERT M. Pedestrian detection and tracking using three-dimensional ladar data [J]. The International Journal of Robotics Research, 2010, 29(12): 1516-1528.
[5] WOJKE N, HASELICH M. Moving vehicle detection and tracking in unstructured environments [C]∥ Robotics and Automation(ICRA),2012 IEEE International Conference on. Anchorage, Alask:IEEE, 2012: 3082-3087.
[6] PETROVSKAYA A, THRUN S. Model based vehicle detection and tracking for autonomous urban driving [J]. Autonomous Robots, 2009, 26(2/3): 123-139.
[7] HIMMELSBACH M, LUETTEL T, WUENSCHE H J. Real-time object classification in 3D point clouds using point feature histograms [C]∥ Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on. St. louis, Missouri, USA: IEEE, 2009: 994-1000.
[8] AZIM A, AYCARD O. Detection, classification and tracking of moving objects in a 3D environment [C]∥Intelligent VehiclesSymposium(IV).Vilamoura, Portugal: IEEE,2012: 802-807.
[9] HIMMELSBACH M, HUNDELSHAUSEN F, WUENSCHE H. Fast segmentation of 3D point clouds for ground vehicles [C]∥ Intelligent Vehicles Symposium (IV), 2010 IEEE. Taipei, Taiwan :IEEE, 2010: 560-565.
[10] DARMS M, RYBSKI P E, URMSON C. An adaptive model switching approach for a multisensor tracking system used for autonomous driving in an urban environment [C]∥ AUTOREG 2008. Steuerung und Regelung von Fahrzeugen und Motoren: [s.n.], 2008:521-530.
[11] MORI T, SATO T, NOGUCHI H, et al. Moving objects detection and classification based on trajectories of LRF scan data on a grid map [C]∥ Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on. Taipei, Taiwan: IEEE, 2010: 2606-2611.
[12] SPINELLO L, ARRAS K O, TRIEBEL R, et al. A layered approach to people detection in 3D range data [C]∥ American Association for Artificial Intelligence(AAAI). Atlanta, Georgia:[s.n.], 2010.
[13] KIDONO K, MIYASAKA T, WATANABE A, et al. Pedestrian recognition using high-definition LIDAR [C]∥ Intelligent Vehicles Symposium (IV), 2011 IEEE. San Francisco, CA: IEEE, 2011: 405-410.
[14] LALONDE J F, VANDAPEL N, HUBER D F, et al. Natural terrain classification using three‐dimensional ladar data for ground robot mobility [J]. Journal of Field Robotics, 2006, 23(10): 839-861.
[15] WILLIAMS D. Methods of experimental physics [M]. Waltham, Massachusetts: Academic Press, 1976.
[16] CHANG C C, LIN C J. LIBSVM: a library for support vector machines [J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2(3): 27.

[1] 尤海辉, 马增益, 唐义军, 王月兰, 郑林, 俞钟, 吉澄军. 循环流化床入炉垃圾热值软测量[J]. 浙江大学学报(工学版), 2017, 51(6): 1163-1172.
[2] 董巍, 沈会良. 双向纹理函数稀疏采集与重建[J]. 浙江大学学报(工学版), 2016, 50(12): 2364-2370.
[3] 郭浩东, 陈岭, 丁永锋, 陈根才. 运动识别中基于主题的特征构建方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1149-1154.
[4] 唐有宝, 卜巍, 邬向前. 多层次MSER自然场景文本检测[J]. 浙江大学学报(工学版), 2016, 50(6): 1134-1140.
[5] 沈延斌, 陈岭, 郭浩东, 陈根才. 基于深度学习的放置方式和位置无关运动识别[J]. 浙江大学学报(工学版), 2016, 50(6): 1141-1148.
[6] 陈实, 郑楷洪, 孙凌云, 李彦. 可穿戴计算设备中振动表情的设计与应用[J]. 浙江大学学报(工学版), 2015, 49(12): 2298-2304.
[7] 吴一全,殷骏,朱丽,袁永明. 基于蜂群优化或分解的二维Arimoto灰度熵阈值分割[J]. 浙江大学学报(工学版), 2015, 49(9): 1625-1633.
[8] 杜歆,邹泷. 视点合成中基于深度的空洞修复[J]. 浙江大学学报(工学版), 2015, 49(9): 1616-1624.
[9] 孙凌云, 何博伟, 刘征, 杨智渊. 基于语义细胞的语音情感识别[J]. 浙江大学学报(工学版), 2015, 49(6): 1001-1009.
[10] 王媛媛, 郭延恩, 施国全, 韦俊霞, 夏顺仁. 基于声图像的海底地形边界提取算法[J]. 浙江大学学报(工学版), 2015, 49(2): 376-383.
[11] 杨钟亮, 唐智川, 陈育苗, 高增桂. 面向双侧训练的前臂外骨骼肌肉力-电关系识别模型[J]. 浙江大学学报(工学版), 2014, 48(12): 2152-2161.
[12] 杨力,刘济林. 基于非监督特征学习的分叉道路检测算法[J]. 浙江大学学报(工学版), 2014, 48(9): 1558-1563.
[13] 杨冰,王小华,杨鑫,黄孝喜. 基于HOG金字塔人脸识别方法[J]. 浙江大学学报(工学版), 2014, 48(9): 1564-1569.
[14] 杨力, 刘俊毅, 王延长, 刘济林. 基于全景相机和全向激光雷达的致密三维重建[J]. 浙江大学学报(工学版), 2014, 48(8): 1481-1487.
[15] 胡祝华, 赵瑶池, 程杰仁, 彭金莲. 基于改进DRLSE的运动目标分割方法[J]. 浙江大学学报(工学版), 2014, 48(8): 1488-1495.