Please wait a minute...
浙江大学学报(工学版)
能源工程     
生物质锅炉钢材在氯化钾接触条件下腐蚀特性
余春江,王准,龚彬,骆仲泱
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Corrosion characteristics of biomass bolier steel in KCl contact condition
YU Chun-jiang,WANG Zhun,GONG Bin,LUO Zhong-yang
State Key Laboratory of Clean Energy Utilization of Zhejiang University, Hangzhou 310027, China
 全文: PDF(2767 KB)   HTML
摘要:
为了比较不同材料抗腐蚀特性,模拟生物质锅炉过热器区的条件,在550~700 ℃范围内对生物质锅炉常用的20G、12Cr1MoVG、Super304、SUS316、TP347H、HR3C等钢材进行腐蚀特性对比研究.通过测定试样的增重量,得出腐蚀特性曲线;利用能谱分析仪、扫描电镜和X射线衍射仪对试样腐蚀后的形貌特征、元素质量分数和腐蚀产物的组成进行分析.结果表明,在高温下,常用钢材抗KCl高温腐蚀能力的排序为HR3C>TP347H>Super304>SUS316>12Cr1MoVG>20G;温度和金属表面KCl的附着量对高温腐蚀具有重要影响;KCl高温下可以和合金钢表面镍铬氧化物钝化层反应,直接破坏钝化层的保护作用,从而加速氧化腐蚀的进行.
Abstract:
To compare the corrosion behavior of different stainless steels under typical condition of superheater in biomass fueled boiler, the experimental research was carried out. Commonly used boiler steels such as 20G, 12Cr1MoVG, Super304, SUS316, TP347H and HR3C were tested and the temperature arrangement of  550~700℃ was chosen. The corrosion characteristic curve is drawn through measuring the increment of sample weight. Detailed analysis using Energy Dispersive System(EDS), Scanning Electron Microscope(SEM) and X-ray Diffractometer(XRD) was also conducted to study the morphology features, element content and composition of corrosion products after the samples were collected. The result shows that under high-temperature, the order of those stainless steels’ resistance to KCl corrosion is HR3C>TP347H>Super304>SUS316>12Cr1MoVG>20G. The temperature and adhesion amount of KCl on the metal surface also have significant influence on the rate of corrosion. It was found that the nickel-chromium based passivation layer of the materials is reactive under KCl environment and the damage of this layer is the direct reason for high rate high-temperature corrosion.
出版日期: 2014-11-01
:  TK 6  
基金资助:
国家自然科学基金重点资助项目(51336008);科技部国际合作专项(2011DFA61060);国家“十二五”科技支撑计划重点资助项目(2012BAA09B01)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

余春江,王准,龚彬,骆仲泱. 生物质锅炉钢材在氯化钾接触条件下腐蚀特性[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.11.019.

YU Chun-jiang,WANG Zhun,GONG Bin,LUO Zhong-yang. Corrosion characteristics of biomass bolier steel in KCl contact condition. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.11.019.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.11.019        http://www.zjujournals.com/eng/CN/Y2014/V48/I11/2046

[1] JOHANSEN J M, JAKOBSEN J G, FRANDSEN F J. Release of K Cl and S during pyrolysis and combustion of high-chlorine biomass [J]. Energy Fuels, 2011, 25(11): 4961-4971.
[2] SANDBERG J, KARLSSON C, FDHILA R B .A 7 year long measurement period investigating the correlation of corrosion, deposit and fuel in a biomass fired circulated fluidized bed boiler [J]. Applied Energy, 2011, 88(1): 99-110.
[3] NIELSEN H P, FRANDSEN F J, DAM-JOHANSEN K. The implications of chlorine associated corrosion on the operation of biomass fired boilers [J].Progress in Energy and Combustion Science, 2000, 26(3):283-293.
[4] LI Lian-ming, YU Chun-jiang, HUANG Fang, et al. Study on the deposits derived from a biomass circulating fluidized-bed boiler [J]. Energy Fuels, 2012, 26(9): 6008-6014.
[5] SKRIFVARS B, BACKMAN R, HUPA M, et al. Corrosion of superheater steel materials under alkali salt deposits part 1: the effect of salt deposit composition and temperature [J]. Corrosion Science, 2008, 50(5):1274-1282.
[6] SKRIFVARS B,WESTEN K M,HUPA M, et al. Corrosion of superheater steel materials under alkali salt deposits. part 2: SEM analyses of different steel materials [J] .Corrosion Science ,2010, 52(3):1011-1019.
[7] 李庆, 宋军政, 聂志钢. 130t/h 燃生物质锅炉过热器管子腐蚀原因分析[J]. 发电设备, 2009, 3: 214-218.
Li Qing, Song Jun-zheng, Nie Zhi-gang. Cause analysis on corrosion of a 130t/h biomass-fired boilers superheater tubes [J]. Power Equipment, 2009, 3: 214-218.
[8] VAN LOO S, KOPPEJAN J. The handbook of biomass combustion and co-firing [M]. [S. l.]: Earthscan Ltd, 2008.
[9] LITH S C V, FRANDSEN F J, MONTGOMERY M, et al. Lab-scale investigation of deposit-induced chlorine corrosion of superheater materials under simulated biomass-firing conditions. part 1: Exposure at 560° C[J]. Energy Fuels, 2009,23(7), 3457-3468.
[10] DANIEL P L, RAPP R A, FONTANA M G, et al.Advances in corrosion science and technology[M].New York:Plenum Press, 1976.
[11] CHANG Y N, WEI F I. High-temperature chlorine corrosion of metals and alloys[J].Journal of Materials Science,1991,26(14):3693-3698.
[12] RAPP R A,DEVAN J H,DOUGLASS D L. High temperature corrosion in energy systems [J].Master Sci Eng, 1981,50(1):117.
[13] FOLKESON N, JONSSON T, HALVARSSON M, et al.The influence of small amounts of KCl (s) on the high temperature corrosion of a Fe-225Cr-1Mo steel at 400and 500℃[J] . Materials and Corrosion, 2011, 62(7):606-615.
[14]SHINATA Y .Accelerated oxidation rate of chromium induced by sodium chloride [J].Oxidation of Metals, 1987,27(5):315-332.
[15] JONSSON T, FOLKESON N, SVENSSON J E, et al. An ESEM in situ investigation of initial stages of the KCl induced high temperature corrosion of a Fe–225 Cr–1Mo steel at 400° C [J]. Corrosion Science ,2011, 53(6): 2233-2246.
[16] LEHMUSTO J,SKRIFVARS B J,YRJAS P, et al.High temperature oxidation of metallic chromium exposed to eight different metal chlorides [J]. Corrosion Science, 2011,53(10):3315-3323.
[17] LEHMUSTO J, SKRIFVARS B J, YRJAS P, et al. Comparison of potassium chloride and potassium carbonate with respect to their tendency to cause high temperature corrosion of stainless 304L steel[J].Fuel Processing Technology,2013,105: 98-105.
[18] PETTERSSON J, FOLKESON N, JOHANSSON L G, et al. The effects of KCl, K2SO4 and K2CO3 on the high temperature corrosion of a 304-type austenitic stainless steel[J].Oxidation of metals,2011,76(1/2):93-109.
[19] 韦威,黄芳,余春江,et al.生物质燃烧设备高温腐蚀问题初探[J].能源工程,2011, (2):23-28.
WEI Wei,HUANG Fang,YU Chun-jiang,et al. Primary investigation of high-temperature corrosion problems in biomass combustion equipment [J].Energy Engineering,2011, (2):2328.
[20] 余春江,骆仲泱,张文楠.碱金属及相关无机元素在生物质热解转化析出[J].燃烧化学学报,2000,28(5):420-425.
YU Chun-jiang, LUO Zhong-yang, Zhang Wen-nan. Inorganic material emission during biomass pyrolysis [J].Journal Of Fuel Chemistry And Technology , 2000, 28(5):420-425.
[21] 印佳敏,吴占松.TP347H在生物质锅炉过热器气相条件下的腐蚀性(II)[J].热力发电,2009 ,38(7):27-31.
YIN Min-jia, WU Zhan-song. Corrosion characters of TP347H steel under atmosphere of superheaters of biomass burned boilers(II)[J]. Thermal Power Generation, 2009 ,38(7):2731.
[1] 刘长奇, 黄亚继, 王昕晔, 卢志海, 刘凌沁. 玉米秸秆制精制油的生命周期温室气体排放研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1871-1878.
[2] 龚彬, 余春江, 王准, 骆仲泱. 生物质炉排锅炉不同受热面沉积特性[J]. 浙江大学学报(工学版), 2015, 49(8): 1578-1584.
[3] 陈超, 周劲松, 项阳阳, 顾珊, 骆仲泱. 生物质高温气流床分级气化特性[J]. 浙江大学学报(工学版), 2015, 49(4): 626-631.
[4] 吴何来,周劲松,许沧粟,陈文,杨义,骆仲泱. 超临界乙醇提质生物油的汽油机试验研究[J]. 浙江大学学报(工学版), 2015, 49(1): 136-141.
[5] 周慧龙,肖刚,吴荣兵,黄磊,倪明江,高翔,岑可法. 炭化温度对木质素导电炭石墨化结构的影响[J]. 浙江大学学报(工学版), 2014, 48(11): 2066-2071.
[6] 吴荣兵, 肖刚, 陈冬, 周慧龙, 倪明江, 高翔, 岑可法. 木质素高温炭化制备导电焦炭特性研究[J]. 浙江大学学报(工学版), 2014, 48(10): 1752-1757.
[7] 伏启让,黄亚继,牛淼淼,杨高强,刘长奇, 王昕晔. 垃圾衍生燃料流化床富氧气化实验研究[J]. 浙江大学学报(工学版), 2014, 48(7): 1265-1271.
[8] 陈冠益,孔韡,徐莹,李婉晴,马隆龙,颜蓓蓓,陈鸿. 生物质化学制氢技术研究进展[J]. 浙江大学学报(工学版), 2014, 48(7): 1318-1328.
[9] 程军,庄良,黄云, 孙晶,周俊虎,岑可法. 平板式微藻光反应器的流场优化及闪光效应[J]. J4, 2013, 47(11): 1958-1963.
[10] 朱颖颖, 王树荣, 葛晓岚, 李信宝, 周劲松, 骆仲泱. 生物质基合成气合成甲醇的热力学模拟研究[J]. J4, 2011, 45(2): 341-347.
[11] 陈玲红, 吴法, 王勇,吴学成,周昊,岑可法. 基于时域激光诱导辐射确定湍流火焰烟黑粒径[J]. J4, 2010, 44(11): 2169-2172.
[12] 陈玲红, 吴学成, 周昊, 岑可法. 热重红外联用多组分混合气体产物定量分析[J]. J4, 2010, 44(8): 1579-1583.
[13] 马孝琴, 秦建光, 骆仲泱, 余春江, 方梦祥, 岑可法. 添加剂对稻草灰熔融特性影响的实验研究[J]. J4, 2010, 44(8): 1573-1578.
[14] 王琦, 骆仲泱, 王树荣, 岑可法. 生物质快速热裂解制取高品位液体燃料[J]. J4, 2010, 44(5): 988-990.
[15] 宋文路, 程军, 谢斌飞, 周俊虎, 岑可法. 脂肪预处理发酵联产氢气和甲烷的研究[J]. J4, 2010, 44(3): 476-481.