Please wait a minute...
J4  2010, Vol. 44 Issue (11): 2169-2172    DOI: 10.3785/j.issn.1008973X.2010.11.022
能源工程     
基于时域激光诱导辐射确定湍流火焰烟黑粒径
陈玲红, 吴法, 王勇,吴学成,周昊,岑可法
浙江大学 能源清洁利用国家重点实验室, 浙江 杭州 310027
The size determination of soot particle in turbulent flame based on
time-resolved laser-induced emission
CHEN Ling-hong, WU Fa, WANG Yong, WU Xue-cheng, ZHOU Hao, CEN Ke-fa
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
 全文: PDF  HTML
摘要:

对非稳态丙烷湍流火焰中的烟黑粒径进行在线测量.高能脉冲激光直接照射火焰中的烟黑微粒,其受热辐射光谱信号由光电倍增管检测.为降低信号噪音,采用分段平均方法拟合获得烟黑等亚微米量级固体颗粒粒径.所得结果与透射电镜测量结果吻合.通过统计多个激光脉冲下颗粒各粒径值,获得了不同空燃比下丙烷湍流火焰中烟黑粒径分布的变化规律.本方法为非稳态燃烧过程中可吸入颗粒物尺寸分布提供了一种有效的在线监测手段.

Abstract:

An on-line size measurement of soot particles in unsteadystate propane turbulent flame was investigated.  By applying high-power pulse laser beam, the soot particles in flame were heated and their thermal radiation was detected by a photomultiplier. In order to reduce the signal noise, a time-division average fitting method was developed to determine the size of such submicron scale solid particulates as soot particles, and the results coincide with those obtained by Transmission Electron Microscope. By counting the particle size under a series of laser pulses, the size distribution of soot particles in turbulent flame with various ratio of air to fuel was obtained. The above method can be used as an effective tool for on-line monitoring size distribution of inhalable particulates in unsteady-state combustion processes.

出版日期: 2010-12-23
:     
基金资助:

国家重点基础研究发展计划资助项目(2009CB219802);高等学校学科创新引智计划资助项目(B08026).

通讯作者: 岑可法.     E-mail: kfcen@zju.edu.cn
作者简介: 陈玲红(1972-), 女,浙江绍兴人,工程师,博士。 从事燃烧过程中气体、固体微粒等污染物形成机理及抑制的研究. E-mail:chenlh@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈玲红, 吴法, 王勇,吴学成,周昊,岑可法. 基于时域激光诱导辐射确定湍流火焰烟黑粒径[J]. J4, 2010, 44(11): 2169-2172.

CHEN Ling-hong, WU Fa, WANG Yong, WU Xue-cheng, ZHOU Hao, CEN Ke-fa. The size determination of soot particle in turbulent flame based on
time-resolved laser-induced emission. J4, 2010, 44(11): 2169-2172.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2010.11.022        http://www.zjujournals.com/eng/CN/Y2010/V44/I11/2169

[1] MELTON L A, Soot diagnostics based on laserheating[J]. Applied Optics, 1984, 23(13): 2201-2208.
[2]MICHELSEN H A, Understanding and predicting the temporal response of laserinduced incandescence from carbonaceous particles [J]. Journal of Chemical Physics, 2003, 118(15): 7012-7045.
[3] 王飞,严建华,马增益,等.运用激光诱导发光法测量碳黑粒子浓度的模拟计算[J]. 中国电机工程学报, 2006,177(7): 6-11.
WANG Fei, YAN Jianhua, MA Zengyi, et al. Simulation on soot concentration measurement with laser induced incandescence [J]. Proceedings of the CSEE, 2006,177(7): 6-11.
[4] 王宇, 姚强, 何旭,等.用激光诱导可见光法测量电场影响下火焰碳烟颗粒浓度的分布变化[J]. 中国电机工程学报,2008,238(8): 34-39.
WANG Yu, YAO Qiang, HE Xu, et al. Electric field control of soot distribution in flames using laserinduced incandescence [J]. Proceedings of the CSEE, 2008,238(8): 34-39.
[5] SCHULZ C, KOCK B F, HOFMANN M, et al. Laserinduced incandescence: recent trends and current questions [J].Applied Physics BLasers and Optics, 2006,83(3):333-354.
[6] CHEN Linghong, CEN Kefa, GARO A, et al. A 3D numerical simulation of laser induced incandescence of soot particles in coal combustion products [J]. Zhejiang University Science A, 2009, 10(9): 1320-1326.
[7] CHEN Linghong, GARO A, CEN Kefa, et al. Numerical simulation of soot optical diagnostics in nonoptically thin media [J]. Applied Physics B Lasers and Optics, 2007,87(4): 739-747.
[8] WILL S, SCHRAML S, LEIPERTZ A. 2Dimensionl sootparticle sizing by timeresolved laserinduced incandescence [J].Optics Letters, 1995, 20(22): 2342-2344. 
[9] LEHRE T, JUNGFLEISCH B, SUNTZ R, et al. Size distribution of nanoscaled particles and gas temperatures from timeresolved laserinduced incandescence  [J]. Applied Optics, 2003, 42(12): 202-12030.

[1] 宁志华,何乐年,胡志成. 一种高压高可靠性开关电源控制芯片[J]. J4, 2014, 48(3): 377-383.
[2] 李林,陈家旺,顾临怡,王峰. 轴向柱塞泵/马达变量阀配流机构[J]. J4, 2014, 48(1): 29-34.
[3] 陈钊,余锋,陈婷婷. 基于日志结构的闪存均衡回收策略[J]. J4, 2014, 48(1): 92-99.
[4] 蒋湛,姚晓明,林兰芬. 基于特征自适应的本体映射方法[J]. J4, 2014, 48(1): 76-84.
[5] 陈迪仕 ,张宇,李平. 微小型无人直升机地面效应建模[J]. J4, 2014, 48(1): 154-160.
[6] 霍新新,褚金奎,韩冰峰,姚斐.  基于多个压电换能器的接口电路[J]. J4, 2013, 47(11): 2038-2045.
[7] 杨鑫,许端清,杨冰. 基于不规则性的并行计算方法[J]. J4, 2013, 47(11): 2057-2064.
[8] 王玉强,张宽地,陈晓东. 胶黏钢-混凝土组合梁的界面行为数值分析[J]. J4, 2013, 47(9): 1593-1598.
[9] 崔何亮, 张丹, 施斌.  布里渊分布式传感的空间分辨率及标定方法[J]. J4, 2013, 47(7): 1232-1237.
[10] 彭勇,徐小剑. 集料分布对沥青混合料劈裂强度影响数值分析[J]. J4, 2013, 47(7): 1186-1191.
[11] 伍晓榕,裘乐淼,张树有,孙良峰,郭传龙. 模糊语境下的复杂系统关联FMEA方法[J]. J4, 2013, 47(5): 782-789.
[12] 金波,陈诚,李伟. 具有半球形足端的六足机器人步态修正算法[J]. J4, 2013, 47(5): 768-774.
[13] 钟世英, 吴晓君, 蔡武军, 凌道盛, 蒋祝金, 王顺玉. 月面软着陆足垫水平拖曳模型试验装置研制[J]. J4, 2013, 47(3): 465-471.
[14] 袁幸,朱永生,张优云,洪军,祁文昌. 基于正反问题的滚动轴承损伤程度评估[J]. J4, 2012, 46(11): 1960-1967.
[15] 杨飞,朱株,龚小谨,刘济林. 基于三维激光雷达的动态障碍实时检测与跟踪[J]. J4, 2012, 46(9): 1565-1571.