Please wait a minute...
浙江大学学报(工学版)
能源工程     
基于混合协同过滤的Web服务QoS预测方法
俞东进,殷昱煜,吴萌萌,刘愉
杭州电子科技大学 计算机学院,浙江 杭州 310018
QoS prediction for Web services based on hybrid collaborative filtering
YU Dong-jin, YIN Yu-yu, WU Meng-meng, LIU Yu
School of Computer, Hangzhou Dianzi University, Hangzhou, 310018, China
 全文: PDF(746 KB)   HTML
摘要:
为了解决由于服务质量(QoS)历史数据缺失而造成基于QoS的Web服务选择无法得到满意结果的问题,提出一种基于混合协同过滤的Web服务质量预测方法.该方法根据目标用户和目标服务自身特性和相关区域信息,选用不同的预测方法计算缺失的QoS值.如用户(或服务)属于特殊用户类(或特殊服务类),或者服务对区域敏感,则采用基于用户和基于服务的预测方法.否则,利用改进后的欧氏距离测量服务和用户的相似度,并通过引入平衡因子整合基于用户和基于服务的2种不同预测方法.基于真实公开的数据集的实验结果表明,该方法具有较高的Web服务QoS的预测精度,尤其在历史QoS数据稀疏情况下.
Abstract:
In order to avoid the unsatisfying results for selection of Web services due to the lack of historical quality of service (QoS) data,  a  collaborative-filtering-based method was proposed, It predicteds the missing QoS values using different approaches based on the characteristics and the related regional information of the target users and services. For the special users and services, or the region-sensitive services, it employed the user-based or service-based approaches. Otherwise, employed the adjusted Euclidean distance equation for their similarity calculation, and introduced the balance factors to integrate the user-based result and service-based result. The
experimental results based on a real public dataset show that the method achieves the high precision especially for the sparse historical QoS datasets.
出版日期: 2014-11-01
:  TP 311  
基金资助:
国家自然科学基金资助项目(61100043,61472112);浙江省自然科学基金资助项目(LY12F02003);浙江省科技计划重点资助项目(2012C11026-3)
作者简介: 俞东进(1969-),男,教授级高工,从事软件工程、服务计算和智能信息处理的
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

俞东进,殷昱煜,吴萌萌,刘愉. 基于混合协同过滤的Web服务QoS预测方法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.11.018.

YU Dong-jin, YIN Yu-yu, WU Meng-meng, LIU Yu. QoS prediction for Web services based on hybrid collaborative filtering. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.11.018.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.11.018        http://www.zjujournals.com/eng/CN/Y2014/V48/I11/2039

[1] DUSTDAR S, SCHREINER W, SCHREINER W. A survey on Web services composition [J]. International Journal of Web and Grid Services, 2005, 1(1): 130.
[2] BILGIN A S, SINGH M P. A DAML-based repository for QoS-aware semantic Web service selection [C] ∥ Proceedings of IEEE International Conference on Web Services. San Diego: IEEE, 2005: 368-375.
[3] SHAO LS, ZHANG J, WEI Y. Personalized QoS prediction for web services via collaborative filtering [C] ∥ Proceedings of IEEE International Conference on Web Services. Salt Lake City: IEEE, 2007: 439-446.
[4] 张莉, 张斌, 黄利萍, 等. 预测Web QoS的协作过滤算法 [J]. 东北大学学报:自然科学版, 2011, 32(2): 202-206.
ZHANG L, ZHANG B, HUANG LP, et al. A collaborative filtering approach for web QoS prediction [J]. Journal of Northeastern University: Natural Science, 2011, 32(2): 202-206.
[5]张莉, 张斌, 黄利萍, 等. 基于服务调用特征模式的个性化Web服务QoS预测方法[J]. 计算机研究与发展, 2013, 50(5): 1066-1075.
ZHANG L, ZHANG B, HUANG LP, et al. A personalized web service quality prediction approach based on invoked feature model [J]. Journal of Computer Research and Development, 2013, 50(5): 1066-1075.
[6] CHEN X, LIU XD, HUANG ZC. RegionKNN: A scalable hybrid collaborative filtering algorithm for personalized web service recommendation [C] ∥ Proceedings of IEEE International Conference on Web Services. Miami: IEEE, 2010, 9-16.
[7] ZHENG ZB, MA H. WSRec: A collaborative filtering based Web service recommender system [C] ∥ Proceedings of IEEE International Conference on Web Services. Los Angeles: IEEE , 2009, 437-444.
[8] ZHENG ZB, MA H. QoS-aware web service recommendation by collaborative filtering [J]. IEEE Transactions on Services Computing, 2011, 4(2): 140-152.
[9]LO W, YIN JW, DENG SG, et al. Collaborative web service QoS prediction with location-based regularization [C] ∥ Proceedings of IEEE International Conference on Web Services. Honolulu: IEEE, 2012: 464-471.
[10]ZHENG ZB, MA H., LYU M R, KING I. Collaborative web service QoS prediction via neighborhood integrated matrix factorization [J]. IEEE Transactions on Services Computing, 2013, 6(3): 289-299.
[11]XU YS, YIN JW, LO W, et al. Personalized location-aware QoS prediction for web services using probabilistic matrix factorization [C] ∥ Proceedings of Web Information Systems Engineering. Nanjing: Springer. 2013: 229-242.
[12] BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering [C] ∥ Proceedings of Annual Conference Of Uncertainty in Artificial Intelligence. Madison: AUAI, 1998: 43-52.
[13] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms [C] ∥ Proceedings of International World Wide Web Conference. Hong Kong: ACM, 2001: 285-295.
[14] JIANG YC, LIU JX and TANG MD. An Effective Web service recommendation method based on personalized collaborative filtering [C] ∥ Proceedings of IEEE International Conference on Web Services. Washington DC: IEEE, 2011:211-218.
[15] ZHENG ZB, ZHANG YL. Distributed QoS evaluation for real-world web services [C] ∥ Proceedings of IEEE International Conference on Web Services. Miami: IEEE , 2010: 83-90.
[16] 邵凌霜, 周立, 赵俊峰 ,等. 一种Web Service的服务质量预测方法 [J]. 软件学报, 2009, 20(8): 2062-2073.
SHAO LS, ZHOU Li, ZHAO JF, et al. Web service QoS prediction approach [J]. Journal of Software, 2009, 20(8): 2062-2073.
[1] 王海艳, 程严. 基于离散系数的双向服务选择方法[J]. 浙江大学学报(工学版), 2017, 51(6): 1197-1204.
[2] 袁友伟, 余佳, 郑宏升, 王娇娇. 基于新颖性排名和多服务质量的云工作流调度算法[J]. 浙江大学学报(工学版), 2017, 51(6): 1190-1196.
[3] 许荣斌, 石军, 张鹏飞, 谢莹. Petri网的映射变迁关系相似性度量[J]. 浙江大学学报(工学版), 2017, 51(6): 1205-1213.
[4] 常超, 刘克胜, 谭龙丹, 贾文超. 基于图模型的C程序数据流分析[J]. 浙江大学学报(工学版), 2017, 51(5): 1007-1015.
[5] 王继奎. 贝叶斯冲突Web数据可信度算法[J]. 浙江大学学报(工学版), 2016, 50(12): 2380-2385.
[6] 涂鼎, 陈岭, 陈根才, 吴勇, 王敬昌. 基于在线层次化非负矩阵分解的文本流主题检测[J]. 浙江大学学报(工学版), 2016, 50(8): 1618-1626.
[7] 杨莎, 叶振宇, 王淑刚, 陶海, 李石坚, 潘纲, 朱斌. 感认知增强的智能机械手系统[J]. 浙江大学学报(工学版), 2016, 50(6): 1155-1159.
[8] 罗林, 苏宏业, 班岚. Dirichlet过程混合模型在非线性过程监控中的应用[J]. 浙江大学学报(工学版), 2015, 49(11): 2230-2236.
[9] 汪宏浩, 王慧泉, 金仲和. 基于增量链接的可回滚星载软件在轨更新方法[J]. 浙江大学学报(工学版), 2015, 49(4): 724-731.
[10] 王继奎, 李少波. 基于真值发现的冲突数据源质量评价算法[J]. 浙江大学学报(工学版), 2015, 49(2): 303-318.
[11] 蔡华林,陈刚,陈珂. 多类别复合资源的空间匹配[J]. 浙江大学学报(工学版), 2015, 49(1): 69-78.
[12] 柯海丰,应晶. 基于R-ELM的实时车牌字符识别技术[J]. 浙江大学学报(工学版), 2014, 48(7): 1209-1216.
[13] 刘智慧, 张泉灵. 大数据技术研究综述[J]. 浙江大学学报(工学版), 2014, 48(6): 957-972.
[14] 田甜,巩敦卫. 基于覆盖难度选择路径的测试数据进化生成[J]. 浙江大学学报(工学版), 2014, 48(5): 948-994.
[15] 柯海丰,应晶. 基于R-ELM的实时车牌字符识别技术[J]. J4, 2014, 48(2): 0-0.