Please wait a minute...
浙江大学学报(工学版)
土木工程     
锈蚀高强度钢丝的力学性能与评级方法
潘骁宇1,谢旭1,李晓章1,孙文智2,朱汉华2
1. 浙江大学 土木工程学系,浙江 杭州 310058; 2.金华市公路管理局,浙江 金华 321017;3.浙江省公路管理局,浙江 杭州 310009
Mechanical properties and grading method of corroded high-tensile steel wires
PAN Xiao-yu1, XIE Xu1, LI Xiao-zhang1, SUN Wenzhi2, ZHU Han-hua3
1.Department of Civil Engineering, Zhejiang University, Hangzhou, 310058, China; 2.Jinhua Highway Administration Bureau, Jinhua, 321017, China; 3.Highway Administration Bureau of Zhejiang Province, Hangzhou, 310009, China
 全文: PDF(2580 KB)   HTML
摘要:

为了建立高强度钢丝的锈蚀分级标准,以4座服役10 a以上的拱桥吊杆高强度钢丝样本为对象,在进行原状钢丝拉伸和疲劳试验研究的基础上,用刻痕方法模拟钢丝的表面蚀坑,通过有限元分析以及拉伸试验研究蚀坑形貌对钢丝力学性能的影响,建立蚀坑参数与钢丝极限应变的定量关系,提出考虑蚀坑形状的锈蚀钢丝评价标准。结果表明,锈蚀对钢丝弹性模量和极限强度的影响不敏感,但蚀坑引起钢丝的延性下降;锈蚀钢丝的延性下降程度与蚀坑部位的应力集中状况有关,用蚀坑形状参数可以较精确地评价钢丝受锈蚀影响的程度。

Abstract:

In order to establish a grading method of corroded high-tensile steel wires, samples of steel wire served for more than a decade on four arch bridges were employed and the mechanical properties were investigated from the tensile and fatigue tests. The effect of pitting geometries was analyzed by finite element method (FEM) and tension test, and pits were simulated by means of notches on the surface of steel wires. According to the theoretical analysis and experimental results, the quantitative relationship between the pitting geometries and the ultimate strain of wire was proposed, and a grading method based on pitting geometries was developed. The results show that the elastic modulus and the ultimate strength of the wire are not sensitive to, while the ductility is significantly influenced by the pitting corrosion. Besides, stress concentration around the pitting is the cause of the decline in ductility of corroded high-tensile steel wires. The status of corroded wires can be evaluated precisely by the depth and shape of pits.

出版日期: 2014-11-01
:  U 443.38  
基金资助:

国家自然科学基金资助项目(51378460);浙江省交通科技资助项目(2012H47)

通讯作者: 谢旭,男,教授     E-mail: xiexu@zju.edu.cn
作者简介: 潘骁宇(1990-),女,硕士生,从事拱桥吊杆损伤研究. E-mail: panxy@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

潘骁宇,谢旭,李晓章,孙文智,朱汉华. 锈蚀高强度钢丝的力学性能与评级方法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.11.002.

PAN Xiao-yu, XIE Xu, LI Xiao-zhang, SUN Wenzhi, ZHU Han-hua. Mechanical properties and grading method of corroded high-tensile steel wires. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.11.002.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.11.002        http://www.zjujournals.com/eng/CN/Y2014/V48/I11/1917

[1] 高欣. 在役钢管混凝土拱桥吊杆损伤与系统可靠性分析方法[D]. 哈尔滨: 哈尔滨工业大学, 2011.
GAO Xin. Analysis methods for suspender damage and system reliability of existing concrete filled steel tubular arch bridge [D]. Harbin: Harbin Institute of Technology, 2011.
[2] BARTON S C, VERMAAS G W, DUBY P F, et al. Accelerated corrosion and embrittlement of high-strength bridge wire [J]. Journal of Materials in Civil Engineering,ASCE, 2000, 12(1): 33-38.
[3] XU Jun, CHEN Wei-zhen. Behavior of wires in parallel wire stayed cable under general corrosion effects [J]. Journal of Constructional Steel Research, 2013, 85: 40-47.
[4] NKAMURA S, SUZUMURA K, TARUI T. Mechanical properties and remaining strength of corroded bridge wires [J]. Structural Engineering International, 2004, 14(1): 50-54.
[5] BETTI R, WEST A C, VERMAAS G, et al. Corrosion and embrittlement in high-strength wires of suspension bridge cables [J]. Journal of Bridge Engineering,ASCE, 2005, 10(2): 151-162.
[6] 岡本裕, 中村俊一, 鈴村恵太. 橋梁用亜鉛めっき鋼線の腐食粗度計測および人工ピット付き鋼線の疲労強度[J]. 土木学会論文集A, 2010, 66(4): 691-699.
OKAMOTO Y, NAKAMURA S, SUZUMURA K. Measurement of corrosion roughness of galvanized bridge wires and fatigue strength of wires with artificial pits [J]. Journal of Structural Mechanics and Earthquake Engineering,JSCE, 2010, 66(4): 691-699.
[7] 鈴村恵太, 中村俊一, 樽井敏三. 腐食した橋梁用亜鉛めっき鋼線の強度特性[J]. 土木学会論文集A, 2003: 367-377.
SUZUMURA K, NAKAMURA S, TARUI T. Strength characteristics of corroded galvanized bridge wires [J] Journal of Structural Mechanics and Earthquake Engineering, JSCE, 2003: 367-377.
[8] 徐俊, 陈惟珍, 刘学. 斜拉索退化机理及钢丝力学模型[J]. 同济大学学报:自然科学版, 2008, 36(7): 911-915.
XU Jun, CHEN Wei-zhen, LIU Xue. Deterioration mechanism of cables and mechanics model of wires [J]. Journal of Tongji University Natural Science, 2008, 36(7): 911-915.
[9] HOPWOOD I I, HAVENS J H. Inspection, prevention and remedy of suspension bridge cable corrosion problems [R]. Lexington: University of Kentucky, Lexington , 1984.
[10] MAYRBAURL R M. Corrosion in suspension bridge cables [C]∥16th Congress of IABSE. Lucerne: \[s.n.\]2000 16(6): 1566-1573.
[11] SALAS R M, KOTYS A L, WEST J S, et al. Final evaluation of corrosion protection for bonded internal tendons in precast segmental construction[R].Austin USA: The University of Texas at Austin: [s. n.], 2002.
[12] GB/T5223-2002.预应力混凝土用钢丝[S]. 北京: 中国标准出版社, 2002.
GB/T5223-2002. Steel wires for the prestressing of concrete[S]. Beijing: China Standard Press, 2002.
[13] GB/T17101-2008. 桥梁缆索用热镀锌钢丝[S]. 北京: 中国标准出版社, 2008.
GB/T17101-2008. Hot-dip galvanized steel wires for bridge cables[S]. Beijing: China Standard Press, 2008.
[14] PILKEY W D. Petersons stress concentration factors[M]. New York: John Wiley & Sons Inc, 1997.
[15] VAL D V, MELCHERS R E. Reliability of deteriorating RC slab bridges[J]. Journal of Structural Engineering, 1997, 123 (12): 1638-1644

[1] 陈冲, 袁行飞. 钢绞线截面应力精细化分析[J]. 浙江大学学报(工学版), 2017, 51(5): 841-846.
[2] 张婷婷,谢旭,潘骁宇. 考虑断丝影响的平行钢丝索拉伸力学特性[J]. 浙江大学学报(工学版), 2016, 50(5): 841-847.