Please wait a minute...
浙江大学学报(工学版)
土木工程     
不同温度和位移边界下混凝土楼板配筋建议
肖南,杨逢春
浙江大学 建筑工程学院,浙江 杭州,310058
Suggestions for reinforcement increment in concrete floor slabs under different temperature and displacement boundary conditions
XIAO Nan,YANG Feng-chun
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058,China
 全文: PDF(2037 KB)   HTML
摘要:

为了定量地确定温度对楼板承载能力和裂缝宽度的影响,在温度场和应力场有限元分析理论的基础上,采用ANSYS软件,对角板和边板2种温度边界条件和多种位移约束条件下的楼板,进行数值模拟分析.结果表明,相对于楼板的承载能力,温度应力对裂缝的影响更大.考虑温度应力后,楼板将从纯弯构件变成拉弯构件,满足承载能力的楼板配筋将增加,同时,温度应力将导致楼板裂缝宽度增大.在实际应用中,为简化计算,对于有明显温差影响的楼板,仍可按纯弯构件计算,但满足此纯弯构件承载能力和裂缝宽度所得配筋量,建议分别增加15%和25%,以抵消温度应力所致钢筋应力的增量.

Abstract:

In order to quantitatively determine the temperature effects on the bearing capacity and width of crack in slabs, on the basis of finite element method analyses of temperature field and stress field,  two kinds of floor slabs with different temperature and various displacement constraint boundary conditions were analyzed employing ANSYS software. The results show that temperature stresses have greater impact on crack width than on bearing capacity in floor slab. After considering the temperature stress, the mechanical behaviors of slabs are transformed from pure bending to bending combined with axial tension, hence, reinforcements of floor slabs required for bearing capacity should be increased. Meanwhile, the temperature will also lead to the crack width broadening. In practice application, the floor slabs subjected to obvious temperature impacts can still be calculated as pure bending elements in order to simplify computation, however, whose reinforcements required for bearing capacity and crack width resisting are suggested to increase 15% and 25%, respectively, so as to safely counteract the temperature influences on the increment of reinforcement stress in floor slabs.

出版日期: 2014-11-01
:  TU 312  
基金资助:

floor slab| crack| temperature field| temperature stress| reinforcement increment suggestion

作者简介: 肖南(1965- ),男,副教授,主要从事结构工程的研究.Email: sholran@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

肖南,杨逢春. 不同温度和位移边界下混凝土楼板配筋建议[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.11.003.

XIAO Nan,YANG Feng-chun. Suggestions for reinforcement increment in concrete floor slabs under different temperature and displacement boundary conditions. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.11.003.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.11.003        http://www.zjujournals.com/eng/CN/Y2014/V48/I11/1925

[1] ACI 318M-05. Building code requirements for structural concrete and commentary [S]. Farmington Hills: American Concrete Institute, 2005.
[2] EN1992-1-1. Design of concrete structure-Part 1-1: General rules and rules for buildings [S]. Brussels: CEN, 2004.
[3] GB50010-2010. 混凝土设计规范[S]. 北京: 建筑工业出版社, 2010.
GB50010-2010.Code for design of concrete structure\[S\].Beijing:China Building Industry Press,2010.
[4] 王曦晗, 王钰. 变形作用引起楼板裂缝问题的几点分析[J]. 黑龙江科技信息, 2010, (22): 266-269.
WANG Xi-han, WANG Yu. Analysis of floor slabs crack problems caused by deformation [J]. Heilongjiang Science and Technology Information, 2010, (22): 266-269.
[5] 蒯行成, 田建华, 任毕乔. 框筒结构楼板的温度裂缝分析[J]. 湖南大学学报, 2002, 29(5): 20-24.
KUAI Xing-cheng, TIAN Jian-hua, REN Bi-qiao. Analysis of temperature cracks of floor slabs in frame-tube structures [J]. Journal of Hunan University, 2002, 29(5): 20-24.
[6] 李维特, 黄保海, 毕仲波. 热应力理论分析及应用[M]. 北京:中国电力出版社, 2007: 203-210.
[7] 孔祥谦. 有限单元法在传热学中的应用[M]. 北京: 科学出版社, 1998: 127.
[8] VECCHIO F J, SATO J A. Thermal gradient effects in reinforced concrete frame structures [J]. ACI Structural Journal, 1990, 87(3): 262-275.
[9] 张建荣, 刘照球, 刘文燕. 混凝土表面自然对流换热系数的试验研究[J]. 四川建筑科学研究, 33(5): 232-235.
ZHANG Jian-rong, LIU Zhao-qiu, LIU Wen-yan. Experimental research on natural convective coefficient of concrete surface [J]. Sichuan Building Science, 2007, 33(5): 232235.
[10] 浙江大学. 建筑结构静力计算实用手册[M]. 北京: 中国建筑工业出版社, 2009: 152-161.
[11] GB50009-2001. 建筑结构荷载规范[S]. 北京: 建筑工业出版社, 2001.
GB50009-2001.Load code for the design of building structure\[S\].Beijing:China Building Industry press,2001.
[12] SOKOLNIKOFF I S. Mathematical theory of Elasticity [M]. New York: McGRAW-HILL BOOK COMPANY, Inc. 1956: 358-364.
[13] LU F, GONG M, XUE H, et al. Analysis on the temperature distribution and thermal effects in corner-pumped slab lasers [J]. Optics and Lasers in Engineering, 2007, 45(1): 43-48.
[14] 张建荣, 刘照球. 混凝土对流换热系数的风洞试验研究[J]. 土木工程学报, 2006, 39(9): 39-42.
ZHANG Jian-rong, LIU Zhao-qiu. A study on the convective heat transfer coefficient of concrete in wind tunnel experiment [J]. China Civil Engineering Journal,2006, 39(9): 4348.
[15] TAKAHITO G, TAKASHI K, ICHIRO N. Axisymmetric quasi-static thermal stresses in an infinite slab [J]. International Journal of Solids and Structures, 1973, 9(2): 243-255.
[16] 潘建伍, 曹双寅, 曹新明. 砖混结构现浇钢筋混凝土楼板温度应力分析[J]. 工业建筑,2002, 32(6): 33-35.
Pan Jian-wu, CAO Shuang-yin, CAO Xinming. Thermal stress analysis of the cast-in-place reinforced concrete floorslabs of mansonry structures [J]. Industrial Construction, 2002, 32(6): 243-255.
[17] 殷敏, 杨长林, 赵二良. 钢筋混凝土现浇板裂缝原因分析[J]. 科技创新导报, 2011, (6): 65-66.
YIN Min, YANG Chang-lin, ZHAO Er-liang. Analysis of cracks in cast-in-place reinforced concrete [J]. Science and Technology Innovation Herald, 2011, (6): 65-66.

[1] 钱程, 沈国辉, 郭勇, 邢月龙. 节点半刚性对输电塔风致响应的影响[J]. 浙江大学学报(工学版), 2017, 51(6): 1082-1089.
[2] 楼文娟,罗罡,胡文侃. 输电线路等效静力风荷载与调整系数计算方法[J]. 浙江大学学报(工学版), 2016, 50(11): 2120-2127.
[3] 王磊, 梁枢果,王泽康,张正维. 超高层建筑横风向风振局部气动外形优化[J]. 浙江大学学报(工学版), 2016, 50(7): 1239-1246.
[4] 沈国辉, 姚旦, 余世策, 楼文娟,邢月龙, 潘峰. 单山和双山风场特性的风洞试验[J]. 浙江大学学报(工学版), 2016, 50(5): 805-812.
[5] 梁笑天,袁行飞. 索支撑压杆屈曲性能分析[J]. 浙江大学学报(工学版), 2015, 49(3): 505-510.
[6] 楼文娟,王嘉伟,杨伦,陈勇. 雷暴风三维脉动风速场数值模拟[J]. 浙江大学学报(工学版), 2014, 48(7): 1162-1169.
[7] 赵阳,林寅,余世策. 大型低矮圆柱壳结构风荷载特性的风洞试验[J]. 浙江大学学报(工学版), 2014, 48(5): 820-826.
[8] 王磊,梁枢果,邹良浩,汤怀强,王述良.  超高层建筑涡振过程中体系振动频率[J]. 浙江大学学报(工学版), 2014, 48(5): 805-812.
[9] 沈国辉, 项国通, 邢月龙, 郭勇, 孙炳楠, 楼文娟. 2种风场下格构式圆钢塔的天平测力试验研究[J]. J4, 2014, 48(4): 704-710.
[10] 沈国辉,陈震,邢月龙,郭勇,孙炳楠. 环形加劲板方向受压钢管节点的承载力[J]. J4, 2014, 48(1): 168-173.
[11] 李勰, 陈水福. 门式刚架轻钢结构抗风安全性分析[J]. J4, 2013, 47(12): 2141-2145.
[12] 沈国辉, 王宁博, 任涛, 施祖元, 楼文娟. 建筑结构风致响应的时频域计算方法比较[J]. J4, 2013, 47(9): 1573-1578.
[13] 杨伦,黄铭枫,楼文娟. 高层建筑周边三维瞬态风场的混合数值模拟[J]. J4, 2013, 47(5): 824-830.
[14] 卢旦,李承铭. 基于嵌入空间变形体法的流固耦合网格更新[J]. J4, 2013, 47(3): 508-514.
[15] 宁鹏飞,唐德高. 起爆位置偏差对结构内爆炸荷载的影响分析[J]. J4, 2012, 46(12): 2252-2258.