Please wait a minute...
浙江大学学报(工学版)
环境与化学工程     
生物质化学制氢技术研究进展
陈冠益1,孔韡1,2,徐莹1,2,李婉晴1,马隆龙1,2,颜蓓蓓1,陈鸿1
1.天津大学 环境科学与工程学院,天津 300072;2.中国科学院广州能源研究所,广东 广州 510640
Review of hydrogen production from biomass by chemical conversion process
CHEN Guan-yi1, KONG Wei1, 2, XU Ying1,2, LI Wan-qing1, MA Long-long1,2, YAN Bei-bei1, CHEN Hong1
1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; 2. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
 全文: PDF(1213 KB)   HTML
摘要:

可再生生物质制氢是未来氢能的主要来源,涉及到化学制氢和生物制氢.生物质化学制氢技术包括生物质气化、热解、超临界转化等常规热化学法制氢和生物质解聚液相产物的蒸汽重整、水相重整、自热重整和光催化重整制氢等技术.对以上生物质制氢方法进行了综述,对反应条件、反应机理、催化剂使用、技术经济性及各自存在的优缺点进行分类整理与比较.认为生物质气化制氢及热解制氢技术的发展较成熟,可以实现规模化生产,但是制氢的选择性和产氢率不高;生物质液相产物催化重整制氢技术更适合较大规模的集中制氢,转化率和产氢率高,但技术途径复杂.对生物质制氢技术进行了展望.

Abstract:

Hydrogen from biomass is considered to be an important future hydrogen supplier. It usually contains chemical and biological conversion. Conventional thermo-chemical conversion covers gasification, pyrolysis and supercritical process, and catalytic reforming includes steam reforming, aqueous-phase reforming, auto-thermal reforming and photocatalytic reforming process using the liquid products derived from biomass depolymerization. These processes that mentioned above were overviewed and their operating conditions, reaction mechanism, catalysts, economic-technical advantages and disadvantages were compared. Gasification or pyrolytic conversion is approaching industrial scale, but hydrogen selectivity and yield are far from satisfactory. Catalytic reforming process of the biomass-derived liquid product may be applicable to scale-up with high hydrogen selectivity and yield, but technological process is still under development. The future developing direction of biomass to hydrogen development was pointed out.

出版日期: 2014-08-04
:  TK 6  
基金资助:

国家“973”重点基础研究发展规划资助项目(2012CB215303); 国家自然科学基金资助项目(51036006);国家自然科学基金青年基金资助项目(51106108)

作者简介: 陈冠益(1970-),男,教授,博导,从事生物质能源开发与利用的研究.E-mail:chen@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈冠益,孔韡,徐莹,李婉晴,马隆龙,颜蓓蓓,陈鸿. 生物质化学制氢技术研究进展[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.07.025.

CHEN Guan-yi, KONG Wei, XU Ying, LI Wan-qing, MA Long-long,YAN Bei-bei, CHEN Hong. Review of hydrogen production from biomass by chemical conversion process. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.07.025.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.07.025        http://www.zjujournals.com/eng/CN/Y2014/V48/I7/1318

[1] PUIG-ARNAVAT M, CARLES B J, CORONAS A. Review and analysis of biomass gasification models [J]. Renewable and Sustainable Energy Reviews, 2010, 14(9): 2841-2851.
[2] GIL J, CORELLA J, AZNAR M P, et al. Biomass gasification in atmospheric and bubbling fluidized bed: effect of the type of gasifying agent on the product distribution [J]. Biomass and Bioenergy, 1999, 17(5): 389-403.
[3] ALEX C C, CHANG H F, LIN F J, et al. Biomass gasification for hydrogen production [J]. International Journal of Hydrogen Energy, 2011, 36(21): 14252-14260.
[4] YASUYUKI I, KAZUHIRO K, KOICHI H. Selective hydrogen generation from real biomass through hydrothermal reaction at relatively low temperatures [J]. Biomass and Bioenergy, 2009, 33(1): 813.
[5] BISHNU A, ANIMESH D, PRABIR B. An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO [J]. International Journal of Hydrogen Energy, 2010, 35(4): 1582-1589.
[6] HUANG B S, CHEN H Y, CHUANG K H. Hydrogen production by biomass gasification in a fluidized-bed reactor promoted by an Fe/CaO catalyst [J]. International Journal of Hydrogen Energy, 2012, 37(8): 18.
[7] ROLANDO Z, KRISTER S. Rapid high-temperature pyrolysis of biomass in a free-fall reactor [J]. Chemical Technology, 1996, 75(5): 545-550.
[8] 闵凡飞,张明旭,陈清如,等. 固定床反应器中生物质催化热解气化制富氢燃料气的研究 [J]. 武汉理工大学学报, 2006, 28(专辑2): 245-250.
MIN Fan-fei, ZHANG Ming-xu, CHEN Qing-ru, et al. Catalysis pyrolysis gasification of fresh biomass in a fixed-bed to produce hydrogen rich gas [J]. Journal of Wuhan University of Technology, 2006, 28: 245-250.
[9] HAO Q L, WANG C, LU D Q, et al. Production of hydrogen-rich gas from plant biomass by catalytic pyrolysis at low temperature [J]. International Journal of Hydrogen Energy, 2010, 35(17): 8884-8890.
[10] 王天岗,孙立,张晓东. 生物质热解释氢的实验研究 [J]. 山东理工大学学报,2006,20(5):41-43.
WANG Tian-gang, SUN Li, ZHANG Xiao-dong. The study of the behavior of hydrogen released from biomass pyrolysis [J]. Journal of Shandong University of Technology, 2006, 20(5): 41-43.
[11] 张秀梅,陈冠益,孟祥梅,等. 催化热解生物质制取富氢气体的研究 [J]. 燃料化学学报,2004,32(4): 446-448.
ZHANG Xiu-mei, CHEN Guan-yi, MENG Xiang-mei, et al. Production of hydrogen-rich gas from biomass by catalytic pyrolysis [J]. Journal of Fuel Chemistry and Technology, 2004, 32(4): 446-448.
[12] 倪萌, LEUNG M K H, SUMATHY K. 生物质热化学过程制氢技术 [J]. 可再生能源,2004 (5):36-39.
NI Meng, LEUNG M K H, SUMATHY K. Hydrogen production from biomass thermochemical process [J]. Renewable Energy, 2004(5): 36-39.
[13] 赵亮,张军,盛昌栋,等. 生物质超临界水气化制氢中催化剂的研究进展[J]. 现代化工,2009, 29(增2): 65-68.
ZHAO Liang, ZHANG Jun, SHENG Chang-dong, et al. Progress in catalysts for hydrogen production by biomass supercritical water gasification [J]. Modern Chemical Industry, 2009, 29(suppl.2): 65-68.
[14] 裴爱霞,张锐,金辉,等. 超临界水中花生壳气化制氢催化剂的筛选与研究 [J]. 西安交通大学学报,2008, 42(7): 913-918.
PEI Ai-xia, ZHANG Rui, JIN Hui, et al. Research on catalysts and their catalytic characteristics for hydrogen production by gasification of peanut shell in supercritical water [J]. Journal of Xian Jiaotong University, 2008, 42(7): 913-918.
[15] 任辉,张荣,王锦凤,等. 废弃生物质在超临界水中转化制氢过程的研究 [J]. 燃料化学学报,2003, 31(6):595-599.
REN Hui , ZHANG Rong , WANG Jin-feng, et al. Investigation of hydrogen production from waste biomass in supercritical water [J]. Journal of Fuel Chemistry and Technology, 2003, 31(6): 595-599.
[16] TULAY G M, SINEM K, MEHMET S, et al. Hydrogen production from some agricultural residues by catalytic subcritical and supercritical water gasification [J]. The Journal of Supercritical Fluids, 2012, 67: 22-28.
[17] TAKUYA Y, YOSHITO O, YUKIHIKO M. Gasification of biomass model compounds and real biomass in supercritical water [J]. Biomass and Bioenergy, 2004, 26(1): 76-78.
[18] JIN H, LU Y J, LIAO B, et al. Hydrogen production by biomass gasification in supercritical water with a fluidized bed reactor [J]. International Journal of Hydrogen Energy, 2010, 35(13): 6066-6075.
[19] CHOWDHURY M B I, HOSSAIN M M, CHARPENTIER P A, et al. Effect of supercritical water gasification treatment on Ni/La2O3-Al2O3-based catalysts [J].Applied Catalysis A: General, 2011, 405(1/2): 84-92.
[20] MADENOGLE T G, BOUKIS N, SAGLAM M, et al. Supercritical water gasification of real biomass feedstocks in continuous flow system [J]. International Journal of Hydrogen Energy, 2011, 36(22): 14408-14415.
[21] LV Y J, JIN H, GUO L J, et al. Hydrogen production by biomass gasification in supercritical water with a fluidized bed reactor [J]. International Journal of Hydrogen Energy, 2008, 33(21): 6066-6075.
[22] LI S, LU Y J, GUO L J. Hydrogen production by biomass gasification in supercritical water with bimetallic Ni-M/γ-Al2O3catalysts (M=Cu, Co and Sn) [J]. International Journal of Hydrogen Energy, 2011, 36(22): 14391-14400.
[23] 王景昌,苑塔亮,王琨,等. 氧化钙对生物质在超临界水中气化制氢的影响[J]. 石油化工高等学校学报, 2007, 20(1): 21-27.
WANG Jing-chang, YUAN Ta-liang, WANG Kun, et al. Effect of CaO on hydrogen production by vaporization from biomass in supercritical water [J]. Journal of Petrochemical Universities, 2007, 20(1): 21-27.
[24] 丁兆军. 生物质制氢技术综合评价研究 [D]. 北京:中国矿业大学,2010.
DING Zhao-jun. Study on comprehensive evaluation of hydrogen production technology from biomass [D]. Beijing: China University of Mining and Technology, 2010.
[25] FASTSIKOSTAS A N, VERYKIOS X E. Reaction network of steam reforming of ethanol over Ni-based catalysts [J]. Journal of Catalysis, 2004, 225(2): 439-452.
[26] LIGURAS D K, KONDARIDUS D I, VERYKIOS X E. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts [J]. Applied Catalysis B: Environmental, 2003, 43(4): 345-354.
[27] VIZCAINO A J, CARRERO A, CALLES J A. Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts [J]. International Journal of Hydrogen Energy, 2007, 32(10/11): 1450-1461.
[28] DOMINGUEZ M, TABOADA E, MOLINS E, et al. Ethanol steam reforming at very low temperature over cobalt catalytic in a membrane reactor [J]. Catalysis Today, 2012, 193(1): 101-106.
[29] 王林,陈顺权,刘源. NiO/ LaMnO3催化剂用于乙醇水蒸气重整反应 [J]. 物理化学学报,2008, 24 (5): 849-854.
WANG Lin, CHEN Shun-Quan, LIU Yuan. NiO/LaMnO3 catalysts for steam reforming of ethanol [J]. Acta Physico-Chimica Sinica, 2008, 24 (5): 849-854.
[30] MEDRANO J A, OLIVA M, RUIZ J, et al. Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed [J]. Energy, 2011, 36(4): 2215-2224.
[31] LU Z K, HU X, ZHANG L J, et al. Renewable hydrogen production by a mild-temperature steam reforming of the model compound acetic acid derived from bio-oil [J]. Journal of Molecular Catalysis A: Chemical, 2012, 355: 123-133.
[32] CHEN G Y, ZHAO L X. Preliminary investigation on hydrogen-rich gas production by co-steam-reforming of biomass and crude glycerin [J]. International Journal of Hydrogen Energy, 2012, 37(1): 765-773.
[33] 汪璐,王铁军,张琦,等. 两段式固定床反应器上生物油水相部分的重整制氢反应 [J]. 化工学报,2009, 60(8):2055-2059.
WANG Lu, WANG Tie-jun, ZHANG Qi, et al. Hydrogen production from reform of bio-oil aqueous phase over Z2O4 catalyst using two stage fixed bed reactor [J]. Journal of the Chemical Industry and Engineering Society of China, 2009, 60(8): 2055-2059.
[34] HUBER G W, DUMESIC J A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery [J]. Catalysis Today, 2006, 111(1/2): 119-132.
[35] 马隆龙,王铁军,吴创之,等. 木质纤维素化工技术及应用[M]. 北京:科学出版社, 2010: 169-170.
[36] 温国栋,徐云鹏,魏莹,等. 负载型Pt催化剂上生物质水相重整制氢 [J]. 催化学报,2009,30(8): 830-835.
WEN Guo-dong, XU Yun-peng, WEI Ying, et al. Hydrogen production by aqueous-phase reforming of biomass over supported Pt catalysts [J]. Chinese Journal of Catalysis, 2009, 30(8): 830-835.
[37] 白赢,卢春山,马磊,等. Ce和Mg改性的γ-Al2O3负载Pt催化剂催化乙二醇水相重整制氢 [J].催化学报,2006,27(3): 275-280.
BAI Ying, LU Chun-shan, MA Lei, et al. Hydrogen production by aqueous-phase reforming of ethylene glycol over Pt catalysts supported on γ-Al2O3 modified with Ce and Mg [J]. Chinese Journal of Catalysis, 2006, 27(3): 275-280.
[38] GUO Y, LIU X H, MUHAMMAD U A, et al. Hydrogen production by aqueous-phase reforming of glycerol over Ni-B catalysts [J]. International Journal of Hydrogen Energy, 2012, 37(1): 227-234.
[39] KIM H D, PARK H J, KIM T W, et al. Hydrogen production through the aqueous phase reforming of ethylene glycol over supported Pt-based bimetallic catalysts [J]. International Journal of Hydrogen Energy, 2012, 37(10): 8310-8317.
[40] LIU J, SUN J, HU J, et al. Aqueous-phase reforming of ethylene glycol to hydrogen on Pd/Fe3O4 catalyst prepared by co-precipitation: Metal–support interaction and excellent intrinsic activity [J]. Journal of Catalysis, 2010, 274(2): 287-295.
[41] TOKAREV A V, KIRILIN A V, MURZINA E V, et al. The role of bio-ethanol in aqueous phase reforming to sustainable hydrogen [J]. International Journal of Hydrogen Energy, 2010, 35(22): 12642-12649.
[42] MENEZES A O, RODRIGUES M T, ZIMMARO A, et al. Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides [J]. Renewable Energy, 2011, 36(2): 595-599.
[43] MERYEMOGLU B, HESENOV A, IRMAK S, et al. Aqueous-phase reforming of biomass using various types of supported precious metal and raney-nickel catalysts for hydrogen production [J]. International Journal of Hydrogen Energy, 2010, 35(22): 12580-12587.
[44] GUO Y, MUHAMMAD U A, LIU X H, et al. Effect of supports basic properties on hydrogen production in aqueous-phase reforming of glycerol and correlation between WGS and APR [J]. Applied Energy, 2012, 92: 218-222.
[45] WANG X M, LI N, PFEFFERLE L D, et al. Pt-Co bimetallic catalyst supported on single walled carbon nanotube: XAS and aqueous phase reforming activity studies [J]. Catalysis Today, 2009, 146(1/2): 160-165.
[46]王胜年,王树东,吴迪镛,等. 甲醇自热重整制氢反应分析[J]. 燃料化学学报,2001,29(3): 238-242.
WANG Sheng-nian, WANG Shu-dong, WU Di-yong, et al. Analysis of autothermal reformer of H2 production for proton exchange membrane fuel cell vehicles [J]. Journal of Fuel Chemistry and Technology, 2001, 29(3): 238-242.
[47] 李淑莲,陈光文,焦凤军,等. 甲醇自热重整制氢用Cu-ZnO/Al2O3催化剂的研究[J]. 催化学报,2004, 25(12): 979-982.
LI Shu-lian, CHEN Guang-wen, J IAO Feng-jun, et al. Studies on Cu-ZnO/ Al2O3 catalyst for hydrogen production via autothermal reforming of methanol [J]. Chinese Journal of Catalysis, 2004, 25(12): 979-982.
[48] CHEN W H, SYU Y. Thermal behavior and hydrogen production of methanol steam reforming and autothermal reforming with spiral preheating [J]. International Journal of Hydrogen Energy, 2011, 36(5): 3397-3408.
[49] GUTIERREZ, KARINEN R, AIRAKSINEN S, et al. Autothermal reforming of ethanol on noble metal catalysts [J]. International Journal of Hydrogen Energy, 2011, 36(15): 8967-8977.
[50] CHEN H Q, YU H, TANG Y, et al. Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides [J].Journal of Natural Gas Chemistry, 2009, 18(2): 191-198.
[51] CHEN H Q, YU H, PENG F, et al. Autothermal reforming of ethanol for hydrogen production over perovskite LaNiO3 [J]. Chemical Engineering Journal, 2010, 160(1):333-339.
[52] HUANG L H, LIU Q, CHEN R R, et al. Hydrogen production via auto-thermal reforming of bio-ethanol: the role of iron in layered double hydroxide-derived Ni035Mg265AlO45±δ catalysts [J]. Applied Catalysis A: General, 2011, 393(1/2): 302-308.
[53] GUTIERREZ O F J, OLLERO P, SERRERA A. Thermodynamic analysis of the autothermal reforming of glycerol using supercritical water [J]. International Journal of Hydrogen Energy, 2011, 36(19): 12186-12199.
[54] 翟彦青,唐旭东,徐新,等. Au-NiO/TiO2催化剂上甲醇自热重整和水蒸汽重整制氢的比较研究 [J]. 北京石油化工学院学报,2010, 18(2): 15.
ZHAI Yan-qing, TANG Xu-dong, XU Xin, et al. Production of hydrogen via autothermal reforming and steam reforming of methanol on Au-NiO/TiO2 catalyst [J]. Journal of Beijing Institute o f Petro-chemical Technology, 2010, 18(2): 15.
[55] 崔冰冰,徐新,罗国华,等. Au-NiO/TiO2催化剂催化甲醇自热重整制氢 [J]. 石油化工,2006,35(6): 520-523.
CUI Bing-bing, XU Xin, LUO Guo-hua, et al. Au-NiO/TiO2 catalyst for methanol autothermal reforming to produce hydrogen [J]. Petrochemical Technology, 2006, 35(6): 520-523.
[56] 蔡伟杰,刘琪英,张保才,等. Co/CeO2催化剂上乙醇自热重整制氢 [J]. 分子催化,2007, 21(增刊): 417-418.
CAI Wei-jie, LIU Qi-ying, ZHANG Bao-cai, et al. Co/CeO2 catalyst for ethanol autothermal reforming to produce hydrogen [J]. Journal of Molecular Catalysis, 2007, 21(supplement): 417-418.
[57] 吴玉琪,吕功煊,周全,等. Pt/TiO2光诱导催化重整乙醇制氢 [J]. 分子催化, 2002, 16(2): 101-106.
WU Yu-qi, LU Gong-xuan, ZHOU Quan, et al. Hydrogen production by Pt/ TiO2 photocatalytic reforming of ethanol [J]. Journal of Molecular Catalysis, 2002, 16(2): 101-106.
[58] FU X L, LONG J L, WANG X X, et al. Photocatalytic reforming of biomass: a systematic study of hydrogen evolution from glucose solution [J]. International Journal of Hydrogen Energy, 2008, 33(22): 6484-6491.
[59] STRATAKI N, BEKIARI V, KONDARIDES D I, et al. Hydrogen production by photocatalytic alcohol reforming employing highly efficient nanocrystalline titania films [J]. Applied Catalysis B: Environmental, 2007, 77(1/2):184-189.
[60] WANG L, WANG W Z. Photocatalytic hydrogen production from aqueous solutions over novel Bi05Na05TiO3 microspheres [J]. International Journal of Hydrogen Energy, 2012, 37(4): 3041-3047.
[61] STRATAKI N, ANTONIADOU M, DRACOUPOULOS V, et al. Visible-light photocatalytic hydrogen production from ethanol–water mixtures using a Pt–CdS–TiO2 photocatalys [J]. Catalysis Today, 2010, 151(1/2): 53-57.
[62] YU J G, HAI Y, JARONIEC M. Photocatalytic hydrogen production over CuO-modified titania [J]. Journal of Colloid and Interface Science, 2011, 357(1): 223-228.
[63] BAHRUJ H, BOWKER M, DAVIES P R, et al. New insights into the mechanism of photocatalytic reforming on Pd/TiO2 [J]. Applied Catalysis B: Environmental, 2011, 107(1/2): 205-209.
[64] COLMENARES J C, MAGDZIARZ A, ARAMENDIA M A, et al. Influence of the strong metal support interaction effect (SMSI) of Pt/TiO2 and Pd/TiO2 systems in the photocatalytic biohydrogen production from glucose solution [J]. Catalysis Communication, 2011, 16(1): 16.
[65] 付先亮,王绪绪,张子重,等. 光催化重整碳水化合物制氢[J]. 西安交通大学学报,2008, 42(8): 1044-1047.
FU Xian-liang, WANG Xu-xu, ZHANG Zi-zhong, et al. Hydrogen production from carbohydrate by photocatalytic reforming [J]. Journal of Xian Jiaotong University, 2008, 42(8): 1044-1047.

[1] 刘长奇, 黄亚继, 王昕晔, 卢志海, 刘凌沁. 玉米秸秆制精制油的生命周期温室气体排放研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1871-1878.
[2] 龚彬, 余春江, 王准, 骆仲泱. 生物质炉排锅炉不同受热面沉积特性[J]. 浙江大学学报(工学版), 2015, 49(8): 1578-1584.
[3] 陈超, 周劲松, 项阳阳, 顾珊, 骆仲泱. 生物质高温气流床分级气化特性[J]. 浙江大学学报(工学版), 2015, 49(4): 626-631.
[4] 吴何来,周劲松,许沧粟,陈文,杨义,骆仲泱. 超临界乙醇提质生物油的汽油机试验研究[J]. 浙江大学学报(工学版), 2015, 49(1): 136-141.
[5] 周慧龙,肖刚,吴荣兵,黄磊,倪明江,高翔,岑可法. 炭化温度对木质素导电炭石墨化结构的影响[J]. 浙江大学学报(工学版), 2014, 48(11): 2066-2071.
[6] 余春江,王准,龚彬,骆仲泱. 生物质锅炉钢材在氯化钾接触条件下腐蚀特性[J]. 浙江大学学报(工学版), 2014, 48(11): 2046-2052.
[7] 吴荣兵, 肖刚, 陈冬, 周慧龙, 倪明江, 高翔, 岑可法. 木质素高温炭化制备导电焦炭特性研究[J]. 浙江大学学报(工学版), 2014, 48(10): 1752-1757.
[8] 伏启让,黄亚继,牛淼淼,杨高强,刘长奇, 王昕晔. 垃圾衍生燃料流化床富氧气化实验研究[J]. 浙江大学学报(工学版), 2014, 48(7): 1265-1271.
[9] 程军,庄良,黄云, 孙晶,周俊虎,岑可法. 平板式微藻光反应器的流场优化及闪光效应[J]. J4, 2013, 47(11): 1958-1963.
[10] 朱颖颖, 王树荣, 葛晓岚, 李信宝, 周劲松, 骆仲泱. 生物质基合成气合成甲醇的热力学模拟研究[J]. J4, 2011, 45(2): 341-347.
[11] 陈玲红, 吴法, 王勇,吴学成,周昊,岑可法. 基于时域激光诱导辐射确定湍流火焰烟黑粒径[J]. J4, 2010, 44(11): 2169-2172.
[12] 马孝琴, 秦建光, 骆仲泱, 余春江, 方梦祥, 岑可法. 添加剂对稻草灰熔融特性影响的实验研究[J]. J4, 2010, 44(8): 1573-1578.
[13] 陈玲红, 吴学成, 周昊, 岑可法. 热重红外联用多组分混合气体产物定量分析[J]. J4, 2010, 44(8): 1579-1583.
[14] 王琦, 骆仲泱, 王树荣, 岑可法. 生物质快速热裂解制取高品位液体燃料[J]. J4, 2010, 44(5): 988-990.
[15] 宋文路, 程军, 谢斌飞, 周俊虎, 岑可法. 脂肪预处理发酵联产氢气和甲烷的研究[J]. J4, 2010, 44(3): 476-481.