Please wait a minute...
J4  2013, Vol. 47 Issue (3): 456-464    DOI: 10.3785/j.issn.1008-973X.2013.03.009
土木工程     
近似熵在混凝土结构损伤识别中的应用
谢中凯,刘国华
浙江大学 水工结构与水环境研究所,浙江 杭州 310058
Application of approximate entropy in concrete structures damage identification
XIE Zhong-kai, LIU Guo-hua
Institute of Hydraulic Structures and Water Environment, Zhejiang University, Hangzhou 310058, China
 全文: PDF  HTML
摘要:

基于近似熵理论,利用自由振动信号对钢筋混凝土梁结构进行损伤动力识别研究.通过自功率谱密度函数对衰减信号进行分类,针对不同的信号模式提出不同的近似熵计算方法进行结构的损伤识别.使用互相关函数将不具有规则性的衰减信号转化成具有规则性的互相关-时间序列,采用数值模拟结合试验的方法论证了对衰减信号引入近似熵理论的可行性.对由试验测得的不同损伤工况下的自由振动信号引入互相关近似熵理论发现,互相关近似熵能够识别混凝土结构的小损伤,体现了良好的敏感性|对试验数据添加不同强度的噪声,再进行互相关近似熵计算,发现互相关近似熵在信噪比很低的情况下仍然能够对测试的梁结构进行损伤识别,体现了很强的抗噪能力.

Abstract:

Approximate entropy (ApEn) was introduced to detect damage in reinforced concrete beam structures based on free vibration signal. Decay signal was divided into various categories via auto spectral density function, and different ApEn methods were proposed according to different signal patterns. Cross-correlation function was applied to transform irregular decay signal into regular cross-correlation time series. The feasibility of introducing ApEn into calculating decay signal was validated by numerical simulation and experiment method. Tiny damage in concrete structures could be sensitively detected by applying cross-correlation ApEn method to free vibration signal tested from the experiment under various damage conditions.  Various-intensity noise was added to the original tested signal, and the cross-correlation ApEn method was found to be able to recognize the damage under a very low signal-to-noise ratio condition, which confirms that the cross-correlation ApEn method has strong antinoise ability.

出版日期: 2013-03-01
:  TU 317  
基金资助:

国家自然科学基金资助项目(50579081).

通讯作者: 刘国华,男,教授.     E-mail: zjuliugh@zju.edu.cn
作者简介: 谢中凯(1985-),男,博士生,从事混凝土结构损伤识别研究. E-mail: xzkzju@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

谢中凯,刘国华. 近似熵在混凝土结构损伤识别中的应用[J]. J4, 2013, 47(3): 456-464.

XIE Zhong-kai, LIU Guo-hua. Application of approximate entropy in concrete structures damage identification. J4, 2013, 47(3): 456-464.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.03.009        http://www.zjujournals.com/eng/CN/Y2013/V47/I3/456

[1] 王术新,姜哲.基于结构振动损伤识别技术的研究现状及进展[J].振动与冲击,2004,23(4):99-102.
Wang Shu-xin, JIANG Zhe. Present Developing Situation and Research Advances in the Field of Structural Damage Detection [J]. Journal of Vibration and Shock, 2004, 23(4):99-102.
[2] 郑栋梁,李中付,华宏星.结构早期损伤识别技术的现状和发展趋势[J].振动与冲击,2002,21(2):1-10.
ZHENG Dong-liang, LI Zhong-fu, HUA Hong-xing. A summary review of structural initial damage identification methods [J]. Journal of Vibration and Shock, 2002, 21(2):1-10.
[3] 张敬芬,赵德有.工程结构裂纹损伤振动诊断的发展现状和展望[J].振动与冲击,2002,21(4):22-26.
ZHANG Jing-fen, ZHAO De-you. Summary review of vibration-based crack diagnosis technique for engingeering structures [J]. Journal of Vibration and Shock, 2002, 21(4):22-26.
[4] 马宏伟,杨桂通.结构损伤探测的基本方法和研究进展[J].力学进展,1999,29(4):513-527.
MA Hong-wei, YANG Gui-tong. Basic methods for damage detection based on structural vibration [J]. Journal of Taiyuan University of Technology, 1999,29(4):513-527.
[5] 刘国华,吴志根.引入信息熵理论的砼结构损伤动力识别新思路[J].振动与冲击,2011,30(6):162-171.
LIU Guo-hua, WU Zhi-gen. New thought on dynamic identification technology for damage detection of RC structures by introducing information entropy theory [J]. Journal of Vibration and Shock, 2011, 30(6):162-171.
[6] PINCUS S M. Approximate Entropy as a measure of system complexity[J].Proceedings of the National Academy of Sciences of the United States of America,1991,88(6):2297-2301.
[7] PINCUS S M, KEEFE D L. Quantification of hormone pulsatility via an approximate entropy algorithm[J]. American Journal of Physiology, 1992, 262(5):E741-E754.
[8] PINCUS S M. Assessing serial irregularity and its Implications for health[J]. Annals of the New York Academy of Sciences, 2001, 954(1):245-267.
[9] CANCIO L C, BATCHINSKY A I, SALINAS J, et al. Heart-rate complexity for prediction of prehospital lifesaving interventions in trauma patients[J]. Journal of Trauma-Injury Infection & Critical Care, 2008, 65(4):813819.
[10] OCAK H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy[J]. Expert Systems with Applications, 2009, 36(2):2027-2036.
[11] PINCUS S M, KALMAN R E. Irregularity, volatility, risk and financial market time series[J].Proceedings of the National Academy of Sciences,  2004, 101(38):1370913714.
[12] PINCUS S M. Approximate entropy as an irregularity measure for financial data[J]. Econometric Reviews, 2008, 27:329-362.
[13] YAN R Q, GAO R X.Approximate entropy as a diagnostic tool for machine health monitoring[J].Mechanical System and Signal Processing, 2007, 21(2):824-839.
[14] PREZ-CANALES D, LVAREZ-RAMREZ J , JUREGUI-CORREA J C, et al. Identification of dynamic instabilities in machining process using the approximate entropy method[J]. International Journal of Machine Tools & Manufacture, 2011, 51(6):556-564.
[15] 胡红英,马孝江.局域波近似熵及其在机械故障诊断中的应用[J].振动与冲击,2006,25(4):3840.
HU Hong-ying, MA Xiao-jiang. Application of local wave approximate entropy in mechanical fault diagnosis [J]. Journal of Vibration and Shock, 2006, 25(4):38-40.
[16] WANG Tian-yang, CHENG Wei-dong, LI Jian-yong, et al. Anomaly detection for equipment condition via cross-correlation approximate entropy[C]∥Management Science and Industrial Engineering(MSIE),2011 International Conference on. Harbin: IEEE, 2011: 5255.
[17] 王济,胡晓.MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006:84.
[18] WU Zhi-gen, LIU Guo-hua, ZHANG Zi-hua. Experimental study of structural damage identification based on modal parameters and decay ratio of acceleration signals[J]. Frontiers of Architecture and Civil Engineering in China, 2001, 5(1):112-120.

(上接第421页)[16] KLADOS M A, PAPADELIS C L, BAMIDIS P D. REG-ICA: A new hybrid method for EOG artifact rejection[C]∥Proceedings of the 9th International Conference on Information Technology and Applications in Biomedicine.Larnaca, Cyprus: IEEE, 2009:14.
[17] TICHAVSKY P, KOLDOVSKY Z, DOWN E, et al. Blind signal separation by combining two ICA algorithms: HOS-based EFICA and time structure-based WASOBI[C]∥Proceedings of The 2006 European Signal Processing Conference (EUSIPCO’2006). Florence, Italy: EUSIPCO, 2006.
[18] GHANDEHARION H, ERFANIAN A. A fully automatic method for ocular artifact suppression from EEG data using wavelet transform and independent component analysis[C]∥Proceedings Of the 28th IEEE EMBS Annual International Conference. New York: IEEE, 2006: 5265-5268.
[19] SALVARIS M, SEPULVEDA F. Wavelet and ensemble of FLDs for P300 classification[C]∥ Proceedings of the 4th international IEEE EMBS Conference on Neural Engineering. Antalya, Turkey:IEEE,2009: 339-342.
[20] GUGER C, SCHLOGL A, NEUPER C, et al. Rapid prototyping of an EEG-Based brain-computer interface[J]. IEEE Transaction on Neural Systems and Rehabilitation Engineering, 2001, 9(1): 49-58.
[21] LI Da, WU Jin, ZHANG Jia-cai. An eog artifacts correction method based on subspace independent component analysis[C]∥2010 International Conference on Computational Intelligence and Security (CIS).Nanning, China: IEEE Computer Society, 2010:127-131.
[22] 王魁, 叶闯, 沈一清. 脑电信号中眼电伪迹的自动去除[J]. 计算机工程, 2011, 37(23): 257-260.
WANG Kui, YE Chuang, SHEN Yi-qing. Automatic removal algorithm of ocular artifact in EEG signal[J]. Computer Engineering, 2011, 37(23): 257-260.

[1] 蒋遨宇,陈驹,金伟良. HRB500级钢筋混凝土梁受弯性能分析[J]. J4, 2013, 47(9): 1566-1572.
[2] 罗尧治,孙斌. 建筑物周围风致静压场的风洞试验及数值模拟[J]. J4, 2013, 47(7): 1148-1156.
[3] 谢中凯, 刘国华, 吴志根. 基于传递熵的梁结构损伤动力识别[J]. J4, 2012, 46(10): 1880-1886.
[4] 武海荣, 金伟良, 延永东, 夏晋. 混凝土冻融环境区划与抗冻性寿命预测[J]. J4, 2012, 46(4): 650-657.
[5] 武海荣,金伟良,吕清芳,王海龙. 基于可靠度的混凝土结构耐久性环境区划[J]. J4, 2012, 46(3): 416-423.