Please wait a minute...
J4  2013, Vol. 47 Issue (3): 465-471    DOI: 10.3785/j.issn.1008-973X.2013.03.010
土木工程     
月面软着陆足垫水平拖曳模型试验装置研制
钟世英1,2 吴晓君3 蔡武军1, 凌道盛1, 蒋祝金1, 王顺玉1
1. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058;
2. 深圳市工勘岩土工程有限公司,广东 深圳 518026|3.苏州新港建设集团有限公司,江苏 苏州  205011
Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
ZHONG Shi-ying1,2, WU Xiao-jun3, CAI Wu-jun1, LING Dao-sheng1,
JIANG Zhu-jin1, WANG Shun-yu1
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University ,Hanzhou 310058,China;
2. Shenzhen Expressway Engineering Consultants Company Limited,  Shenzhen 518026, China;
3.Suzhou Xingang Comstruction Group, Sazhou 205011, China
 全文: PDF  HTML
摘要:

为解决月球软着陆探测器在软着陆冲击完成到着陆完全稳定过程中的滑移特性问题,研发软着陆机构水平拖曳模型试验装置.该装置有传动控制系统、拖曳筒体的汽缸和限位器装置、量测系统、模型箱系统等,用于模拟软着陆过程中不同着陆速率、足垫冲击角度以及不同着陆地点下,软着陆机构水平滑移特性测试.由传动控制系统实现设定的水平拖曳速率|拖曳筒体的汽缸和限位器装置实现压力和刺入深度,量测系统对拖曳力、轴力、拖曳速率、刺入深度为和足垫转角进行测量,模型箱系统可配制任意要求的试验基床.开展了足垫水平、刺入深度10 mm的系列试验,结果表明:拖曳力与轴力呈现线性关系,两者分布与美国国家航空航天局(NASA)试验结果相似,试验装置性能可靠.

Abstract:

Horizontal sliding model tests for soft landing mechanisms were conducted to measure the slip characteristic for lunar lander after landing impact occurring in touchdown process. The model test facility, formed by transmission control system, towing cylinder and limiting displacement system, measuring system, model box system, was used to research the  slip characteristic under different landing velocities, footpad angles and landing points. The drive control system achieves any requirement horizontal sliding velocity|the cylinder and displacement restrictor system realizes the requirement pressure and depth|measuring system measures the sliding force, axial force, sliding velocity, displacement and footpad angle|and model box system compoundes the requirement test foundation bed. A series of tests were carried out under footpad level, depth 10 mm. The results show that linear relationship between sliding force and axial force is excellent, and their distribution is similar to National Aeronautics and Space Administration (NASA) results. So the horizontal sliding model tests device is reliable.

出版日期: 2013-03-01
:     
基金资助:

 国家自然科学基金资助项目(51278451);浙江省自然科学基金资助项目(LZ12E09001).

通讯作者: 凌道盛,男,教授,博导.     E-mail: dsling@zju.edu.cn
作者简介: 钟世英(1982-),女,博士生,从事土动力学方面的研究.E-mail: syzhong@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

钟世英, 吴晓君, 蔡武军, 凌道盛, 蒋祝金, 王顺玉. 月面软着陆足垫水平拖曳模型试验装置研制[J]. J4, 2013, 47(3): 465-471.

ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing. J4, 2013, 47(3): 465-471.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.03.010        http://www.zjujournals.com/eng/CN/Y2013/V47/I3/465

[1] 朱汪, 杨建中.月球探测器软着陆机构着陆腿模型与仿真分析[J].宇航学报,2008,29(6):1723-1728.
ZHU Wang, YANG Jian-zhong. Modeling and simulation of landing leg for the lunar landing gear system [J]. Journal of Astronautics, 2008,29(6):1723-1728.
[2] ZHENG Yong-chun, WANG Shi-jie, OUYANG Zi-yuan, et al. CAS-1 lunar soil stimulant[J]. Advance in Space Research, 2009, 43(3):448-454.
[3] 蒋明镜, 李立青.TJ-1模拟月壤的研制[J].岩土工程学报,2011,33(2):209-214.
JIANG Ming-jing, LI Li-qing. Development of TJ-1 lunar soil simulant[J]. Chinese Journal of Geotechnical Engineering, 2011,33(2):209-214.
[4] 钟世英,凌道盛,吴晓君,等. 月壤岩土工程问题研究进展[J]. 浙江大学学报:工学版, 2012, 22(6): 741-743.
ZHONG Shi-ying, LING Dao-sheng, WU Xiao-jun, et al. Review on geotechnical behavior of lunar soil [J]. Journal of Zhejiang University:Engineering Science, 2012, 22(6): 741743.
[5] BRAIN M, WALTER B. Soil-tool interaction theories as they apply to lunar soil simulation [J]. Journal of Aerospace Engineering,1995, 8(2):88-99.
[6] KARAFIATH L. Friction between solids and simulated lunar soils in ultrahigh vacuum and its significance for the design of lunar roving vehicles [J]. Nbs Space Simulation,1970:225-244.
[7] WEIBLEN W, KOCKELMANN H, BURKARD H. Evaluation of different designs of wheel force transducers (part III) [J] . SAE Transactions,1999,108(2):1901-1912.
[8] GU Kan-feng, WEI Ying-zi,WANG Hong-guang, et al. Dynamic modeling and sliding mode driving control for lunar rover slip [C]∥ Proceedings of the International Conference on Integration Technology. Shenzhen: IEEE,2007:36-41.
[9] BEND S. Lunar module/LM/ soil mechanics [M]. [S. 1.]: Analytical Mechanics,1968.
[10] 吴晓君,钟世英,凌道盛,等.着陆器足垫垂直冲击模型试验研究[J].岩土力学,2012,22(4):12-20.
Wu Xiao-jun, ZHONG Shi-ying, LIN Dao-sheng,et al. Model test study on vertical impact of the space Lander footpad[J].Rock and Soil Mechanics, 2012,22(4):12-20.
[11] 张熇,柳忠尧,饶伟. 月面软着陆探测器地面力学试验方法研究[J]. 航天器工程, 2007,16(6):33-38.
ZHANG He, LIU Zhong-rao, RAO Wei. Study on methods for lunar lander dynamical experimentations[J]. Spacecraft Engineering, 2007, 16(6): 33-38.
[12] 龙铝波,卿启湘,文桂林,等. 基于ADAMS的着陆器软着陆稳定性仿真分析[J]. 工程设计学报,2010, 17(5):334-338.
LONG Lü-bo,QING Qi-xiang,WEN Gui-lin, et al. Simulation analysis of lander soft landings stability based on ADAMS[J]. Journal of Engineering Design, 2010, 17(5):334-338.
[13] 朱汪, 杨建中. 月球着陆器软着陆机构着陆稳定性仿真[J]. 宇航学报,2009,30(5): 1792-1796.
ZHU Wang, YANG Jian-zhong. Touchdown stability simulation of landing gear system for lunar lander[J]. Journal of Astronautics, 2009,30(5): 1792-1796.
[14] 蒋万松,黄伟,沈祖炜,等. 月球探测器软着陆动力学仿真[J]. 宇航学报,2011,32(3):462469.
JIANG Wan-song, HUANG Wei, SHEN Zu-wei, et al. Soft landing dynamics simulation for lunar explorer[J]. Journal of Astronautics, 2011,32(3):462-469.
[15] 林轻,聂宏,陈金宝,等. 月球着陆器软着陆冲击仿真[J]. 中国空间科学技术, 2011,10(5):70-76.
LIN Qing, NIE Hong, CHEN Jin-bao et.al. Soft landing impact simulation of lunar lander[J]. Chinese Space Science and Technology, 2011,10(5):70-76.

[1] 宁志华,何乐年,胡志成. 一种高压高可靠性开关电源控制芯片[J]. J4, 2014, 48(3): 377-383.
[2] 李林,陈家旺,顾临怡,王峰. 轴向柱塞泵/马达变量阀配流机构[J]. J4, 2014, 48(1): 29-34.
[3] 陈钊,余锋,陈婷婷. 基于日志结构的闪存均衡回收策略[J]. J4, 2014, 48(1): 92-99.
[4] 蒋湛,姚晓明,林兰芬. 基于特征自适应的本体映射方法[J]. J4, 2014, 48(1): 76-84.
[5] 陈迪仕 ,张宇,李平. 微小型无人直升机地面效应建模[J]. J4, 2014, 48(1): 154-160.
[6] 霍新新,褚金奎,韩冰峰,姚斐.  基于多个压电换能器的接口电路[J]. J4, 2013, 47(11): 2038-2045.
[7] 杨鑫,许端清,杨冰. 基于不规则性的并行计算方法[J]. J4, 2013, 47(11): 2057-2064.
[8] 王玉强,张宽地,陈晓东. 胶黏钢-混凝土组合梁的界面行为数值分析[J]. J4, 2013, 47(9): 1593-1598.
[9] 崔何亮, 张丹, 施斌.  布里渊分布式传感的空间分辨率及标定方法[J]. J4, 2013, 47(7): 1232-1237.
[10] 彭勇,徐小剑. 集料分布对沥青混合料劈裂强度影响数值分析[J]. J4, 2013, 47(7): 1186-1191.
[11] 伍晓榕,裘乐淼,张树有,孙良峰,郭传龙. 模糊语境下的复杂系统关联FMEA方法[J]. J4, 2013, 47(5): 782-789.
[12] 金波,陈诚,李伟. 具有半球形足端的六足机器人步态修正算法[J]. J4, 2013, 47(5): 768-774.
[13] 袁幸,朱永生,张优云,洪军,祁文昌. 基于正反问题的滚动轴承损伤程度评估[J]. J4, 2012, 46(11): 1960-1967.
[14] 杨飞,朱株,龚小谨,刘济林. 基于三维激光雷达的动态障碍实时检测与跟踪[J]. J4, 2012, 46(9): 1565-1571.
[15] 王鹿军, 吕征宇. 基于LSSVM的电梯交通模式的模糊识别[J]. J4, 2012, 46(7): 1333-1338.