Please wait a minute...
J4  2012, Vol. 46 Issue (1): 79-83    DOI: 10.3785/j.issn.1008-973X.2012.01.13
自动化技术、计算机技术     
基于Adaboost-高斯过程分类的人脸表情识别
李文书1,何芳芳1,钱沄涛2,周昌乐3
1.浙江理工大学 信息学院,浙江 杭州 310018;2.浙江大学 计算机科学与技术学院,浙江 杭州 310027;
3.厦门大学 人工智能所,福建 厦门 361005
Facial expression recognition based on
Adaboost-Gaussian process classification
LI Wen-shu1, HE Fang-fang1, QIAN Yun-tao2, ZHOU Chang-le3
1. College of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China; 3. Institute of
Artificial Intelligence, Xiamen University, Xiamen 361005, China
 全文: PDF  HTML
摘要:

为了弥补Ababoost分类器分类精度不够、训练耗时的缺点,利用高斯过程分类器分类精度高、计算复杂度低的优势,提出一种改进的表情识别方法.该算法将高斯过程分类(GPC)和Adaboost的人脸表情识别算法相结合,在训练二分类Adaboost时利用高斯过程分类器训练弱分类器;把这些弱分类器组合成一个总分类器,将二分类AdaboostGPC扩展为多类分类算法.采用Gabor提取面部表情特征,由于Gabor特征提取后存在维度变高、冗余大的问题,引入二维主成分分析(2DPCA)对Gabor特征进行选择.基于Cohn-Kanade和JAFFE数据库的实验结果表明,该算法在识别正确率和速度方面的表现均较好.

Abstract:

By using the Gaussian process classifier’s advantages of high classification accuracy and low computational complexity,  an improved expression recognition method was proposed in order to modify the Adaboost’s disadvantage of poor classification accuracy and long time consuming. The facial expression recognition algorithm combines Gaussian process classification (GPC) with Adaboost. The algorithm uses the Gaussian process classifier as weak classifier when training Adaboost. Then these weak classifiers are combined into an overall classification, and the Adaboost is extended into a multiclass classification algorithm. Gabor wavelet transformation is used to extract facial expressional features, since the highdimensional Gabor features are redundant; the two-dimensional principal component analysis (2DPCA)  is used to select these features. Experimental results based on the Cohn-Kanade database and JAFFE database show that the accuracy and  recognition speed of the algorithm are inspiring.

出版日期: 2012-02-22
:  TP 391  
基金资助:

国家自然科学基金资助项目(60702069, 60672018); 浙江省自然科学基金资助项目(Y1080851) .

作者简介: 李文书(1975-),男,副教授,从事图像处理、认知建模的研究.E-mail:wshlee@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李文书,何芳芳,钱沄涛,周昌乐. 基于Adaboost-高斯过程分类的人脸表情识别[J]. J4, 2012, 46(1): 79-83.

LI Wen-shu, HE Fang-fang, QIAN Yun-tao, ZHOU Chang-le. Facial expression recognition based on
Adaboost-Gaussian process classification. J4, 2012, 46(1): 79-83.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.01.13        http://www.zjujournals.com/eng/CN/Y2012/V46/I1/79

[1] TIAN Y, KANADE T, COHN J. Evaluation of Gabor waveletbased facial action unit recognition in image sequences of increasing complexity [C]∥Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition. Washington: IEEE, 2002: 26-30.
[2] MULLER S, WALLHOFF F, HULSKEN F, et al. Facial expression recognition using pseudo 3D hidden Markov models [C]∥Proceedings of International Conference on Pattern Recognition. Québec City: [s.n.], 2002: 32-35.
[3] ZHANG Y, JI Q. Active and dynamic information fusion for facial expression understanding from image sequences [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005, 27(5): 699-714.
[4] KAPPOR A, QI Y, PICARD R W. Fully automatic upper facial action recognition [C]∥ Proceedings of Analysis and Modeling of Faces and Gestures. Nice, France: [s.n.], 2003: 195-202.
[5] LIU C, SHUM H Y. KullbackLeibler boosting [C] ∥Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition. Wisconsin: IEEE, 2003: 587-594.
[6] BARTLETT M S, LITTLEWOET G, FRANK M, et al. Recognizing facial expression: machine learning and application to spontaneous behavior [C]∥Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 568-573.
[7] PANTIC M, ROTHKRANTZ L. Facial action recognition for facial expression analysis from static face images [J]. IEEE Transactions on Systems, Man and Cybernetics:Part B, 2004, 34 (3): 1449-1461.
[8] CHELLAPPA R, WILSON C L, SIROHEY S. Human and machine recognition of faces: a survey [C]∥Proceedings of the IEEE. [S.l.]: IEEE, 1995: 705-740.
[9] PANTIC M, ROT H K, RANTZ L J M. Automatic analysis of facial expressions: the state of the art [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000, 22(12):1424-1445.
[10] 杨康, 陈晓, 彭国华. 基于统计学习的人脸表情分类[J].  计算机仿真, 2009, 26(6): 237-241.
YANG Kang, CHEN Xiao, PENG Guohua. Facial expression classification based on statistical study [J].  Computer Simulation, 2009, 26(6): 237-241.
[11] 罗飞, 王国胤, 杨勇. 一种基于Gabor小波特征的人脸表情识别新方法[J]. 计算机学习,2009, 36(1): 181-215.
LUO Fei, WANG Guoyin, YANG Yong. New approach for facial expression recognition based on Gabor feature [J]. Computer Science, 2009, 36(1): 181-215.
[12] HAYRAN C, HUPET L, CZYZ J, et al. Independent component analysis for face authentication [C]∥Proceedings of KnowledgeBased Intelligent Information and Engineering Systems. Crema: [s.n.], 2002: 1207-1211.
[13] CHENG J, YING Z. Facial expression recognition based on 2D PCA [J].Computer Engineering and Applications, 2006, 31 (5): 32-39.
[14] 王雪松, 张依阳, 程玉虎. 基于高斯过程分类器的连续空间强化学习[J]. 电子学报, 2009, 37(6): 1153-1158.
WANG Xuesong, ZHANG Yiyang, CHENG Yuhu. Reinforcement learning for continuous spaces based on Gaussian process classifier [J]. Act Electronica Sinica, 2009, 37(6): 1153-1158.
[15] CARL E R, CHRISTOP K I W. Gaussian processes for machine learning [M]. [S.l.]: MIT, 2006: 41-48.
[16] 张晓龙, 任芳. 支持向量机与Adaboost的结合算法研究[J]. 计算机应用研究, 2009, 26(1): 78-80.
ZHANG Xiaolong, REN Fang. Study on combinability of SVM and Adaboost algorithm [J]. Application Research of Computers, 2009, 26(1): 78-80.
[17] 王宇博, 艾海舟, 武勃, 等. 人脸表情的实时分类[J].计算机辅助设计与图形学学报, 2005, 17(6): 1296-1301.
WANG Yubo, AI Haizhou, WU bo, et al. Realtime facial expression classification [J]. Journal of ComputerAided Design and Computer Graphics, 2005, 17 (6): 1296-1301.
[18] KOTSIA I, PITAS I. Facial expression recognition in image sequences using geometric deformation features and support vector machines [J]. IEEE Transactions on Image Processing, 2007, 16(1): 172-187.
[19] ZHANG H, BERG A C, MAIRE M, et al. SVMKNN: discriminative nearest neighbor classification for visual category recognition [C]∥Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2006: 2126-2136.
[20] KANADE T, COHN J F, TIAN Y L. Comprehensive database for facial expression analysis [C]∥ Proceedings of IEEE International Conference on Face and Gesture Recognition. Grenoble: IEEE, 2000: 46-53.

[1] 赵建军,王毅,杨利斌. 基于时间序列预测的威胁估计方法[J]. J4, 2014, 48(3): 398-403.
[2] 崔光茫, 赵巨峰, 冯华君, 徐之海, 李奇, 陈跃庭. 非均匀介质退化图像快速仿真模型的建立[J]. J4, 2014, 48(2): 303-311.
[3] 张天煜, 冯华君, 徐之海, 李奇, 陈跃庭. 基于强边缘宽度直方图的图像清晰度指标[J]. J4, 2014, 48(2): 312-320.
[4] 刘中, 陈伟海, 吴星明, 邹宇华, 王建华. 基于双目视觉的显著性区域检测[J]. J4, 2014, 48(2): 354-359.
[5] 王相兵,童水光,钟崴,张健. 基于可拓重用的液压挖掘机结构性能方案设计[J]. J4, 2013, 47(11): 1992-2002.
[6] 王进, 陆国栋, 张云龙. 基于数量化一类分析的IGA算法及应用[J]. J4, 2013, 47(10): 1697-1704.
[7] 刘羽, 王国瑾. 以已知曲线为渐进线的可展曲面束的设计[J]. J4, 2013, 47(7): 1246-1252.
[8] 胡根生,鲍文霞,梁栋,张为. 基于SVR和贝叶斯方法的全色与多光谱图像融合[J]. J4, 2013, 47(7): 1258-1266.
[9] 吴金亮, 黄海斌, 刘利刚. 保持纹理细节的无缝图像合成[J]. J4, 2013, 47(6): 951-956.
[10] 陈潇红,王维东. 基于时空联合滤波的高清视频降噪算法[J]. J4, 2013, 47(5): 853-859.
[11] 朱凡,李悦,蒋 凯,叶树明,郑筱祥. 基于偏最小二乘的大鼠初级运动皮层解码[J]. J4, 2013, 47(5): 901-905.
[12] 吴宁, 陈秋晓, 周玲, 万丽. 遥感影像矢量化图形的多层次优化方法[J]. J4, 2013, 47(4): 581-587.
[13] 计瑜,沈继忠,施锦河. 一种基于盲源分离的眼电伪迹自动去除方法[J]. J4, 2013, 47(3): 415-421.
[14] 王翔,丁勇. 基于Gabor滤波器的全参考图像质量评价方法[J]. J4, 2013, 47(3): 422-430.
[15] 童水光, 王相兵, 钟崴, 张健. 基于BP-HGA的起重机刚性支腿动态优化设计[J]. J4, 2013, 47(1): 122-130.