Please wait a minute...
J4  2011, Vol. 45 Issue (12): 2134-2141    DOI: 10.3785/j.issn.1008-973X.2011.12.011
土木工程、水利工程     
考虑中主应力系数影响的主应力轴旋转下
原状软黏土变形研究
周建, 郑鸿镔, 温晓贵, 管林波, 邓以亮
浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058
Deformation of intact soft clay under principal stress rotation
with effect of intermediate principal stress
ZHOU Jian, ZHENG Hong-bin, WEN Xiao-gui, GUAN Lin-bo, DENG Yi-liang
MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF  HTML
摘要:

用浙江大学空心圆柱扭剪仪对杭州原状软黏土进行了固结不排水主应力轴旋转试验,试验中保持平均主应力、中主应力系数和切应力不变,进行了应力路径和各应变分量可靠性分析,并在此基础上探讨纯主应力轴旋转对各应变分量、广义切应变和切变模量的影响.研究表明:当中主应力系数等于0.5时,径向应变数值很小,可以忽略不计;轴向应变变化特征与环向应变刚好相反;在各应变分量中扭切应变占主导地位.在低切应力作用下,纯主应力轴旋转产生的应变很小;随着切应力增加,应变分量显著提高;广义切应变在高切应力下才适合选用.主应力轴旋转中切变模量呈“勺”形变化说明土体刚度逐渐降低.研究发现前期主应力轴旋转和高切应力作用对土体后期主应力轴旋转产生的变形有很大的影响.

Abstract:

Undrained shear tests of principal stress rotation on Hangzhou intact soft clay, in which the average principal stress, the coefficient of intermediate principal stress and the shear stress were kept constant, were conducted by using a hollow cylinder apparatus (ZJU-HCA). The reliability analysis of stress paths and strain components was carried out. Thereafter, based on the reliability analysis, the influences of pure principal stress rotation on different strain components and generalized shear strain as well as shear modulus were discussed. In all tests, the coefficient of intermediate principal stress was set to 0.5, and the test results show that the value of radial strain is very small so can be considered as negligible. The development of axial strain is opposed to that of the circumferential strain. The torsional shear strain is dominant when compared with other components. If low shear is stress applied, the corresponding strains in pure principal stress rotation tests are very small. The influence of shear stress reveals that the greater the shear stress, the higher the strain components will be. And the generalized shear strain is better to be considered only under high shear stress level. Shear modulus in pure principal stress rotation tests gradually reduced with a “spoon” shape. It is proved that the previous principal stress rotation and the high shear stress have significant effect on the deformation of intact soft clay due to subsequent rotation of principal stress axes.

出版日期: 2011-12-01
:  TU 411  
基金资助:

国家自然科学基金资助项目(50778162);浙江省回国留学基金资助项目(J20090026);浙江大学中央高校基本科研业务费专项资金资助项目(1A4000172210127).

作者简介: 周建(1970—),女,副教授,主要从事软黏土力学、地基处理、非饱和土本构模型等方面的研究.E-mail:zjelim@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

周建, 郑鸿镔, 温晓贵, 管林波, 邓以亮. 考虑中主应力系数影响的主应力轴旋转下
原状软黏土变形研究[J]. J4, 2011, 45(12): 2134-2141.

ZHOU Jian, ZHENG Hong-bin, WEN Xiao-gui, GUAN Lin-bo, DENG Yi-liang. Deformation of intact soft clay under principal stress rotation
with effect of intermediate principal stress. J4, 2011, 45(12): 2134-2141.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.12.011        https://www.zjujournals.com/eng/CN/Y2011/V45/I12/2134

[1] GUTIERREZ M, ISHIHARA K, TOWHATA I. Model for the deformation of sand during rotation of principal stress directions[J]. Soils and Foundations, 1993, 33(3): 105-117.
[2] NAKATA Y, HYODO M, MURATA H, at al. Flow deformation of sands subjected to principal stress rotation[J]. Soils and Foundations, 1998, 38(2): 115-128.
[3] JOER H A, LANIER J, FAHEY M. Deformation of granular materials due to rotation of principal axes[J]. Geotechnique, 1998, 48(5): 605-619.
[4] TATSUOKA F, SONODA S, HARA K, et al. Failure and deformation of sand in torsional shear[J]. Soils and Foundations, 1986, 26(4): 79-97.
[5] 史宏彦,谢定义,汪闻韶.平面应变条件下主应力轴旋转产生的应变[J].岩土工程学报,2001,23(2): 162-166.
SHI Hongyan, XIE Dingyi, WANG Wenshao. Strain due to rotation of principal stress axes under plane strain condition[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 162-166.
[6] LASHKARI A, LATIFI M. A simple plasticity model for prediction of noncoaxial flow of sand[J]. Mechanics Research Communications, 2007, 34(2): 191-200.
[7] LASHKARI A, LATIFI M. A noncoaxial constitutive model for sand deformation under rotation of principal stress axes[J]. Int J Numer Anal Meh Geomech, 2008, 32(9): 1051-1086.
[8] MIURA K, MIURA S, TOKI S. Deformation behavior of anisotropic sand under principal axes rotation[J]. Soils and Foundations, 1986, 26(1): 57-67.
[9] 王洪瑾,张国平,周克骥.固有和诱发各向异性对击实黏性土强度和变形特性的影响[J].岩土工程学报,1996,18(3): 1-10.
WANG Hongjin, ZHANG Guoping, ZHOU Keji. Effects of inherent and induced anisotropy on strength and deformation characteristics of compacted cohesive soil[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 1-10.
[10] 沈扬.考虑主应力方向变化的原状软黏土试验研究[D].杭州:浙江大学, 2007.
SHEN Yang. Experimental study on effect of variation of principal stress orientation on undisturbed soft clay [D]. Hangzhou: Zhejiang University, 2007.
[11] 管林波.主应力轴旋转对原状软黏土宏观变形和微观结构影响的试验研究[D].杭州:浙江大学,2010.
GUAN Linbo. Experimental study on the deformation and microstructure of intact soft clay under principal stress rotation[D]. Hangzhou: Zhejiang University, 2010.
[12] 沈扬,周建,张金良,等.新型空心圆柱仪的研制与应用[J].浙江大学学报:工学版,2007,41(9): 1450-1456.
SHEN Yang, ZHOU Jian, ZHANG Jinliang, et al. Development and application of novel hollow cylinder apparatus[J]. Journal of Zhejiang University :Engineering Science, 2007, 41(9): 1450-1456.
[13] 沈扬,周建,龚晓南.空心圆柱仪(HCA)模拟恒定围压下主应力轴循环旋转应力路径能力分析[J].岩土工程学报,2006,28(3): 281-287.
SHEN Yang, ZHOU Jian, GONG Xiaonan. Analysis on ability of HCA to imitate cyclic principal stress rotation under constant confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 281-287.
[14] 刘元雪,郑颖人.考虑主应力轴旋转对土体应力应变关系影响的一种新方法[J].岩土工程学报,1998,20(2): 45-47.
LIU Yuanxue, ZHENG Yingren. A new method to analyze the influence of principal stress axes rotation on the stressstrain relation of soils[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 45-47.
[15] 窦宜,段勇.主应力方向偏转条件下黏性土的变形特性[J].水利水运工程学报,1990(4): 351-366.
DOU Yi, DUAN Yong. Deformation behavior of the cohesive soil under the rotation of the principal stress[J]. HydroScience and Engineering, 1990(4): 351-366.
[16] ZDRAVKOVIC L, JARDINE R J. Some anisotropic stiffness characteristics of a silt under general stress conditions[J]. Geotechnique, 1997, 47(3): 407-437.

[1] 刘长殿, 孙红月, 康剑伟, 杜丽丽. 土体的充气阻渗试验[J]. J4, 2014, 48(2): 236-241.
[2] 柯瀚,王文芳,魏长春,陈云敏,詹良通. 填埋体饱和渗透系数影响因素室内研究[J]. J4, 2013, 47(7): 1164-1170.
[3] 王林涛,龚国芳,施虎,刘怀印. 基于盾构密封舱压力直接反馈地表变形控制[J]. J4, 2012, 46(7): 1182-1188.
[4] 刘永莉,孙红月,于洋,詹伟,尚岳全. 基于BOTDR监测技术抗滑桩上滑坡推力确定[J]. J4, 2012, 46(5): 798-803.
[5] 刘永莉, 孙红月, 于洋, 詹伟, 尚岳全. 抗滑桩内力的BOTDR监测分析[J]. J4, 2012, 46(2): 243-249.
[6] 徐日庆,张俊,朱剑锋, 王兴陈. 考虑扰动影响的修正Duncan-Chang模型[J]. J4, 2012, 46(1): 1-7.
[7] 陈国红, 谢康和, 程永峰, 徐妍. 考虑涂抹区渗透系数变化的砂井地基固结解[J]. J4, 2011, 45(4): 665-670.
[8] 施虎,龚国芳,杨华勇,汪慧. 盾构掘进机推进力计算模型[J]. J4, 2011, 45(1): 126-131.