Please wait a minute...
J4  2011, Vol. 45 Issue (11): 2055-2062    DOI: 10.3785/j.issn.1008-973X.2011.11.028
蔡景顺1, 曹发和1, 常林荣1, 张昭1, 张鉴清1,2, 曹楚南1, 2
1. 浙江大学 化学系, 电化学与功能材料研究所 ,浙江 杭州 310027;
2. 腐蚀与防护国家重点实验室, 中科院金属研究所, 辽宁 沈阳 110016
The study of microarc oxidation coating on AZ91 modified by
cerium and its corrosion resistance
CAI Jing-shun1, CAO Fa-he1, CHANG Lin-rong1, ZHANG Zhao1,
ZHANG Jian-qing1,2, CAO Chu-nan1,2
1. Institute of electrochemistry and functional materials, Department of Chemistry, Zhejiang University,
Hangzhou 310027, China;2. State Key Laboratory for Corrosion and Protection, Institute of Metal
Research, The Chinese Academy of Sciences, Shenyang 110016, China
 全文: PDF  HTML

利用交流恒压微弧氧化技术, 通过Ce改性镁合金基体制备高耐蚀微弧氧化膜. 在100、120和 140 V的外加电压下, 对3种试样: AZ91, 质量分数w(Ce) 分别为0.92%和1.80%改性的AZ91微弧氧化过程、微观结构和组成及氧化膜的耐蚀性能进行研究. 应用电子扫描显微镜(SEM), 电子能谱(EDS)和X射线衍射(XRD)等表征氧化膜的微观结构和化学组成. 利用稳态极化曲线和电化学阻抗谱(EIS)测试了氧化膜在质量分数w(NaCl)为3.5%的溶液中的腐蚀过程. 实验结果表明氧化膜成膜过程可以分为3个阶段; 氧化膜主要由MgO组成, 镁合金中的稀土元素Ce促进成膜过程, 增加膜层的致密性; 稀土改性后镁合金氧化膜的耐蚀性比镁合金基体提高4个数量级, 腐蚀电流密度低至10-8 A/cm2.


Anodic coating with higher corrosion resistance was fabricated on AZ91 magnesium alloy modified by cerium element using constant AC voltage microarc oxidation (MAO) power source. The MAO process, microstructure and composition, corrosion resistance of anodic coatings formed on AZ91, AZ91 modified by 0.92 and 1.80% cerium were investigated. The microstructure and composition of the MAO coating were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The corrosion protection performance of MAO coatings was investigated by polarization curves and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. The results show that coating formation process is divided into three stages, and the coating is mainly composed of MgO. The more compact and dense coating is obtained and the rate of coating formation is accelerated by additional cerium element. Corrosion tests indicate that the corrosion resistance of the coating formed on magnesium alloy AZ91 modified by cerium is significantly enhanced about four orders of magnitude comparing with the magnesium alloy, while corrosion current density is even low to 10-8 A/cm2.

出版日期: 2011-12-08
:  TG 178  

国家自然科学基金(50801056, 51131005, 51171172); 浙江省自然科学基金(Y4110074).

通讯作者: 曹发和, 男, 副教授.     E-mail:
作者简介: 蔡景顺(1985-), 男, 硕士生, 从事镁合金腐蚀与防护研究. E-mail:
E-mail Alert


蔡景顺, 曹发和, 常林荣, 张昭, 张鉴清, 曹楚南1. Ce改性AZ91的微弧氧化膜制备及其耐蚀性能[J]. J4, 2011, 45(11): 2055-2062.

CAI Jing-shunCAO Fa-he,CHANG Lin-rong,ZHANG Zhao,ZHANG Jian-qing,CAO Chu-nan. The study of microarc oxidation coating on AZ91 modified by
cerium and its corrosion resistance. J4, 2011, 45(11): 2055-2062.


[1] SONG G L, ATRENS A. Corrosion mechanisms of magnesium alloys [J]. Advanced Engineering Materials, 1999, 1(1):11-33.
[2] DABALA M, BRUNELLI K, NAPOLITANI E, et al. Ceriumbased chemical conversion coating on AZ63 magnesium alloy [J]. Surface and Coating Technology, 2003, 172(2/3):227-232.
[3] WANG K L, ZHU Y M, ZHANG Q B, et al. Effect of rare earth cerium on the microstructure and corrosion resistance of laser cladded nickelbase alloy coatings [J]. Journal of Materials Processing Technology, 1997, 63(1/3):563-563.
[4] LIN P Y, ZHOU H, LI W,et al. Interactive effect of cerium and aluminum on the ignition point and the oxidation resistance of magnesium alloy [J]. Corrosion Science, 2008, 50(9):2669-2675.
[5] ALDYKEWICZ J A J, ISAACS H S, DAVENPORT A J. The investigation of cerium as a cathodic inhibitor for aluminumcopper alloys [J]. Journal of The Electrochemical Society, 1995, 142(10):3342-3350.
[6] GUO H, AN M, XU S, et al. Microarc oxidation of corrosion resistant ceramic coating on a magnesium alloy [J]. Materials Letters, 2006, 60(12):1538-1541.
[7] MALYSHEV V N, ZORIN K M. Features of microarc oxidation coatings formation technology in slurry electrolytes [J]. Applied Surface Science, 2007, 254(5):1511-1516.
[8] ARRABAL R, MATYKINA E, HASHIMOTO T,et al. Characterization of AC PEO coatings on magnesium alloys [J]. Surface and Coatings Technology, 2009, 203(16):2207-2220.
[9] SONG Y L, LIU Y H, YU S R, et al. Plasma electrolytic oxidation coating on AZ91 magnesium alloy modified by neodymium and its corrosion resistance [J]. Applied Surface Science, 2008, 254(10):3014-3020.
[10] LIU W J, CAO F H, CHANG L R, et al. Effect of rare earth element Ce and La on corrosion behavior of AM60 magnesium alloy [J]. Corrosion Science, 2009, 51 (6):1334-1343.
[11] WANG C, ZHU S L, JIANG F, et al. Cerium conversion coatings for AZ91D magnesium alloy in ethanol solution and its corrosion resistance [J]. Corrosion Science, 2009, 51(12):2916-2923.
[12] CAO F H, CAO J L, ZHANG Z, et al. Plasma electrolytic oxidation of AZ91D magnesium alloy with different additives and its corrosion behavior [J]. Materials and Corrosion, 2007, 58(9):696-703.
[13] WU C S, ZHANG Z, CAO F H, et al. Study on the anodizing of AZ31 magnesium alloys in alkaline borate solutions [J]. Applied Surface Science, 2007, 253(8):3893-3898.
[14] DUNLEAVY C S, GOLOSNOY I O, CURRAN J A, et al. Characterization of discharge events during plasma electrolytic oxidation [J]. Surface and Coatings Technology, 2009, 203(22): 3410-3419.
[15] SNIZHKO L O, YEROKHIN A L, PILKINGTON A, et al. Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions [J]. Electrochimica Acta, 2004, 49(13):2085-2095.
[16] BAI A, CHEN Z J. Effect of electrolyte additives on anticorrosion ability of microarc oxide coatings formed on magnesium alloy AZ91D [J]. Surface and Coatings Technology, 2009, 203(14):1956-1963.
[17] LIU W J, CAO F H, ZHONG L Y, et al. Influence of rare earth element Ce and La addition on corrosion behavior of AZ91 magnesium alloy [J]. Materials and Corrosion, 2009, 60(10):795-803.

No related articles found!