Please wait a minute...
J4  2011, Vol. 45 Issue (6): 1048-1051    DOI: 10.3785/j.issn.1008-973X.2011.06.014
李竞春, 杨洪东, 杨阳, 全冯溪
电子科技大学 微电子与固体电子学院,四川 成都 610054
Growth and characterization of local biaxial strained SiGe
LI Jing-chun, YANG Hong-dong, YANG Yang, QUAN Feng-xi
School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of
China, Chengdu 610054, China
 全文: PDF  HTML

利用分子束外延(MBE)对双轴应变SiGe局部区域外延生长和表征进行了研究.图形窗口边界采用多晶Si侧墙,多层SiGe薄膜分段温度生长.采用扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线双晶衍射(XRD)、透射电镜(TEM)和位错密度测试等多种实验技术,结果表明:薄膜表面窗口内双轴应变SiGe薄膜厚度和Ge组分得到精确控制,垂直应变度达到1.175%,其表面粗糙度为0.45 nm,SiGe位错密度为1.2×103 cm-2.由于采用多晶Si侧墙,外延材料表面没有发现窗口边缘处明显位错堆积.实验证实,采用该技术生长的局部双轴应变SiGe薄膜质量良好,基本满足SiGe BiCMOS器件制备要求.


The fabrication and Characterization of local biaxial strained SiGe on Si substrate with ploy-Si sidewall, using solid source MBE, were presented. The scan electron microscopy (SEM), atomic force microscopy (AFM), high resolution X-ray diffraction (HRXRD) and transmission electron microscopy (TEM) are used to characterize the surface morphology and the material quality of strained SiGe. The measurement results show that the Ge concentrations and thickness of strained SiGe layer can be accurate to control, the surface root mean square roughness is 0.45 nm and vertical strain was about 1.175% for the local strained SiGe layer. In this work, the quality of the epitaxial film was improved by a poly-Si sidewall. Threading dislocations density was 1.2×103 cm-2. No dislocation accumulation existed on the boundary of the windows, which indicates the high quality of the SiGe film. The experiment results show that the technology present in this paper meets the fabrication requirements of SiGe BiCMOS.

出版日期: 2011-07-14
:  TN 304  

电子薄膜与集成器件国家重点实验室基金资助项目(D0200401030108 KD0022).

作者简介: 李竞春(1968—),女,副教授,从事SiGe器件与SiGe电路技术研究. E-mail:
E-mail Alert


李竞春, 杨洪东, 杨阳, 全冯溪. 局部双轴应变SiGe材料的生长与表征[J]. J4, 2011, 45(6): 1048-1051.

LI Jing-chun, YANG Hong-dong, YANG Yang, QUAN Feng-xi. Growth and characterization of local biaxial strained SiGe. J4, 2011, 45(6): 1048-1051.


[1] OSMANY S A, HERZEL F, SCHEYTT J C, et al. An integrated 19GHz lowphasenoise frequency synthesizer in SiGe BiCMOS technology [J]. Compoun Semiconductor Integrated Circuit Symposium, 2007, 44(10): 1-4.
[2] JOSEPH A J, HARAME D L, JAGANNATHAN B, et al. Status and direction of communication technologies—SiGe BiCMOS and RFCMOS [J], Proceedings of IEEE, 2005, 93 (9): 1539-1558.
[3] LIU R K, LIU D G, KOENIG U. Research for SiGe HBT [C]∥ Int Workshop Junction Technology. Shanghai: \
[s.n.\], 2004: 249-252.
[4] 许振嘉.半导体的检测与分析[M].2版.北京:科学出版社,2007.
[5] FISCHE A, RICHTER H. Elastic misfit stress relaxation in heteroepitaxial SiGe/Si mesa structures [J]. Applied Physics Letters, 1992, 61(22): 2656-2658.
[6] YAMAGUCHI M, TACHIKAWA M, SUGO M, et al. Analysis for dislocation density reduction in selective area grown GaAs films on Si substrates[J]. Applied Physics Letters, 1990, 56(1): 27-29.
[7] COPEL M, REUTER M C, KAXIRAS E, et al. Surfactants in epitaxial growth [J]. Physical Review Letters, 1989, 63(11): 632-635.
[8] WEMER J, LYUTOVICH K, PANY C P, et al. Defect imaging in ultrathin SiGe (100) strain relaxed buffers [J]. The European Physical JournalApplied Physics, 2004, 27(7): 367-370.
[9] FITZGERALD E A, WASTSON G P, PROAMO R E, et al. Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction in growth area [J]. Journal of Applied Physics, 1989, 65(6): 2220-2237.
[10] NOBLE D B, HOYT J L, KING C A, Reduction in misfit dislocation density by the selective growth of Si1-xGex/Si in small areas[J]. Applied Physics Letters, 1990, 56(1): 51-53.

No related articles found!