Please wait a minute...
J4  2011, Vol. 45 Issue (5): 869-877    DOI: 10.3785/j.issn.1008-973X.2011.05.016
能源工程     
热化学硫碘开路循环制氢系统的设计与模拟
杨剑,王智化,张彦威,陈云,周俊虎,岑可法
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Process design and simulation of open-loop sulfur-iodine
thermo-chemical cycle for hydrogen production
YANG Jian,WANG Zhi-hua,ZHANG Yan-wei,CHEN Yun,
ZHOU Jun-hu,CEN Ke-fa
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hang Zhou 310027, China
 全文: PDF  HTML
摘要:

为了对热化学硫碘开路循环制氢系统进行优化设计及热效率评估,利用大型化工流程模拟软件Aspen Plus对硫碘开路循环联产氢气和硫酸系统进行设计和模拟,计算质量、能量平衡及热效率.在考虑泵功和废热回收的情况下,开路系统的最高计算热效率达到66.2%.其次,利用灵敏度分析,分别考察HI精馏塔回流比、精馏塔压力、HI相循环量、HI分解率和产品硫酸质量分数5个设计参数对系统效率的影响.结果显示,HI相循环量和精馏塔回流比是影响系统效率的主要因素,其他参数对效率影响较小.通过优化本生反应操作条件可显著减少HI相的循环量,提高系统效率.计算结果与文献参考值接近,为今后大规模硫碘循环制氢系统的设计及优化提供参考.

Abstract:

In order to optimize the process and thermal efficiency of the open-loop sulfur-iodine (SI) thermochemical cycle for production of hydrogen, a flowsheet of open-loop SI thermo-chemical cycle was designed and simulated by Aspen Plus. The heat and mass balance as well as thermal efficiency were first calculated. The maximum thermal efficiency of the process was 66.2% considering waste heat recovery and pumping power. Secondly, through sensitivity analysis, the effects of 5 operating parameters like: reflux ratio at HI distillation column, pressure in HI distillation column, flow rate of HI phase, conversion ratio of HI and mass fraction of H2SO4 were evaluated to the thermal efficiency. Results show that the flow rate of HI phase and reflux ratio of the HI distillation column are the primary paramenters influence the total efficiency, while the other parameters are not so obviously. Through optimization of the Bunsen reactor operation condition, the flow rate of the HI phase can be reduced therefore improve the whole thermal efficiency. The simulation results agree well with published datas and can be used as reference for design and optimization of the large scale SI thermo-chemical cycle H2 production system.

出版日期: 2011-11-24
:  TK 91  
基金资助:

浙江省自然科学基金资助项目(Y106538),国家“863”高技术研究发展计划资助项目(2008AA05Z103).

通讯作者: 王智化,男,副教授.     E-mail: wangzh@zju.edu.cn
作者简介: 杨剑(1985-),男,江苏昆山人,硕士生,从事热化学硫碘制氢研究. E-mail: cws019@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

杨剑,王智化,张彦威,陈云,周俊虎,岑可法. 热化学硫碘开路循环制氢系统的设计与模拟[J]. J4, 2011, 45(5): 869-877.

YANG Jian,WANG Zhi-hua,ZHANG Yan-wei,CHEN Yun,ZHOU Jun-hu,CEN Ke-fa. Process design and simulation of open-loop sulfur-iodine
thermo-chemical cycle for hydrogen production. J4, 2011, 45(5): 869-877.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.05.016        https://www.zjujournals.com/eng/CN/Y2011/V45/I5/869

[1] 周俊虎,谢琳,程军,等. 富含三类大分子有机质的废气食物发酵产氢特性[J]. 浙江大学学报:工学版,2006, 40(11): 2007-2010.
ZHOU Junhu, XIE Lin, CHENG Jun, et al. Biohydrogen production from food wastes composed of carbohydrates, proteins and lipoids by fermentation [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(11):2007-2010.
[2] NORMAN J H, BESENBRUCH G E , OKEEFE D. Thermochemical watersplitting for hydrogen production [R]. GRI80/0105, Washington DC: Gas Research Institute, 1981.
[3] SAKURAI M,NAKAJIMA H,ONUKI K,et al. Investigation of 2 liquid phase separation characteristics on the iodinesulfur thermochemical hydrogen production process [J]. Int. J. Hydrogen Energy, 2000, 25(7): 605-611.
[4] GIACONIA A, CAPUTO G, CEROLI A, et al. Experimental study of two phase separation in the Bunsen section of the sulfuriodine thermochemical cycle [J]. Int. J. Hydrogen Energy, 2007, 32(5): 531-536.
[5] SONIA C, NADIA B, MICHEL T, et al. Study of the miscibility gap in H2SO4/HI/I2/H2O mixtures produced by the Bunsen reaction – Part I: Preliminary results at 308K [J]. Int. J. Hydrogen Energy, 2009, 34(17):7155-7161.
[6] 张彦威. 热化学硫碘开路循环联产氢气和硫酸系统的基础问题研究[D]. 杭州: 浙江大学,2008: 28-40.
ZHANG Yanwei. Fundamental research of openloop sulfuriodine thermochemical cycle for the production of hydrogen and sulfuric acid [D]. Hangzhou: Zhejiang University, 2008: 28-40.
[7] CHUPING H, RAISSI T A. Analysis of sulfuriodine thermochemical cycle for solar hydrogen production. Part I: decomposition of sulfuric acid [J]. Solar Energy, 2005, 78(5): 632-646.
[8] CHEIKHOU K, SHRIPAD T, REVANKAR. Sulfuriodine thermochemical cycle: HI decomposition flow sheet analysis [J]. Int. J. Hydrogen Energy, 2008, 33(21): 5996-6005.
[9] WON C C, CHU S P, KYOUNG S K, et al. Conceptual design of sulfuriodine hydrogen production cycle of Korea Institute of Energy Research [J]. Nuclear Engineering and Design, 2009, 239(3): 501-507.
[10] MAKOTO S, HAYATO N, RUSLI A,et al. Experimental study on sidereaction occurrence condition in the iodinesulfur thermochemical hydrogen production process [J]. Int. J. Hydrogen Energy, 2000, 25(7): 613-619.
[11] KNOCHE K F, SCHEPER H,HESSELMANN K.Second law and cost analysis of the oxygen generation step of the General Atomic sulfuriodine cycle [C]∥ Proceedings of the 5th World Hydrogen energy conference. Toronto: Pergamon Press, 1984: 487-502.
[12] NORMAN J H, BESENBRUCH G E, BROWN L C, et al. Thermochemical watersplitting cycle, Benchscale investigations and process engineering [R]. GAA16713, San Diego: General Atomics Corp, 1982.
[13] KASAHARA S, HWANG G J, NAKAJIMA H, et al. Effects of process parameters of IS process on total thermal efficiency to produce Hydrogen from water [J]. J Chem Eng Jpn, 2003, 36(7): 887-899.
[14] LEE B J, NO H C, YOON H J, et al. An optimal operating window for the Bunsen process in the I–S thermochemical cycle [J]. Int. J. Hydrogen Energy, 2008, 33(9): 2200-2210.
[15] LEE B J, NO H C, YOON H J, et al. Development of a flowsheet for iodine–sulfur thermochemical cycle based on optimized Bunsen reaction [J]. Int. J. Hydrogen Energy, 2009, 34(5): 2133-2143.

[1] 朱俏俏, 王智化, 杨剑, 张彦威, 周俊虎, 岑可法. 硫碘制氢中碘量对Bunsen反应影响的实验研究[J]. J4, 2011, 45(10): 1786-1790.
[2] 钱淼, 梅德庆, 刘宾虹, 陈子辰. 微凸台阵列型重整微反应器的传热传质特性[J]. J4, 2011, 45(8): 1387-1392.
[3] 林林, 吴睿, 张欣欣. 微通道热沉几何结构的多参数反问题优化[J]. J4, 2011, 45(4): 734-740.