能源工程 |
|
|
|
|
热化学硫碘开路循环制氢系统的设计与模拟 |
杨剑,王智化,张彦威,陈云,周俊虎,岑可法 |
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027 |
|
Process design and simulation of open-loop sulfur-iodine thermo-chemical cycle for hydrogen production |
YANG Jian,WANG Zhi-hua,ZHANG Yan-wei,CHEN Yun, ZHOU Jun-hu,CEN Ke-fa |
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hang Zhou 310027, China |
引用本文:
杨剑,王智化,张彦威,陈云,周俊虎,岑可法. 热化学硫碘开路循环制氢系统的设计与模拟[J]. J4, 2011, 45(5): 869-877.
YANG Jian,WANG Zhi-hua,ZHANG Yan-wei,CHEN Yun,ZHOU Jun-hu,CEN Ke-fa. Process design and simulation of open-loop sulfur-iodine thermo-chemical cycle for hydrogen production. J4, 2011, 45(5): 869-877.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.05.016
或
https://www.zjujournals.com/eng/CN/Y2011/V45/I5/869
|
[1] 周俊虎,谢琳,程军,等. 富含三类大分子有机质的废气食物发酵产氢特性[J]. 浙江大学学报:工学版,2006, 40(11): 2007-2010. ZHOU Junhu, XIE Lin, CHENG Jun, et al. Biohydrogen production from food wastes composed of carbohydrates, proteins and lipoids by fermentation [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(11):2007-2010. [2] NORMAN J H, BESENBRUCH G E , OKEEFE D. Thermochemical watersplitting for hydrogen production [R]. GRI80/0105, Washington DC: Gas Research Institute, 1981. [3] SAKURAI M,NAKAJIMA H,ONUKI K,et al. Investigation of 2 liquid phase separation characteristics on the iodinesulfur thermochemical hydrogen production process [J]. Int. J. Hydrogen Energy, 2000, 25(7): 605-611. [4] GIACONIA A, CAPUTO G, CEROLI A, et al. Experimental study of two phase separation in the Bunsen section of the sulfuriodine thermochemical cycle [J]. Int. J. Hydrogen Energy, 2007, 32(5): 531-536. [5] SONIA C, NADIA B, MICHEL T, et al. Study of the miscibility gap in H2SO4/HI/I2/H2O mixtures produced by the Bunsen reaction – Part I: Preliminary results at 308K [J]. Int. J. Hydrogen Energy, 2009, 34(17):7155-7161. [6] 张彦威. 热化学硫碘开路循环联产氢气和硫酸系统的基础问题研究[D]. 杭州: 浙江大学,2008: 28-40. ZHANG Yanwei. Fundamental research of openloop sulfuriodine thermochemical cycle for the production of hydrogen and sulfuric acid [D]. Hangzhou: Zhejiang University, 2008: 28-40. [7] CHUPING H, RAISSI T A. Analysis of sulfuriodine thermochemical cycle for solar hydrogen production. Part I: decomposition of sulfuric acid [J]. Solar Energy, 2005, 78(5): 632-646. [8] CHEIKHOU K, SHRIPAD T, REVANKAR. Sulfuriodine thermochemical cycle: HI decomposition flow sheet analysis [J]. Int. J. Hydrogen Energy, 2008, 33(21): 5996-6005. [9] WON C C, CHU S P, KYOUNG S K, et al. Conceptual design of sulfuriodine hydrogen production cycle of Korea Institute of Energy Research [J]. Nuclear Engineering and Design, 2009, 239(3): 501-507. [10] MAKOTO S, HAYATO N, RUSLI A,et al. Experimental study on sidereaction occurrence condition in the iodinesulfur thermochemical hydrogen production process [J]. Int. J. Hydrogen Energy, 2000, 25(7): 613-619. [11] KNOCHE K F, SCHEPER H,HESSELMANN K.Second law and cost analysis of the oxygen generation step of the General Atomic sulfuriodine cycle [C]∥ Proceedings of the 5th World Hydrogen energy conference. Toronto: Pergamon Press, 1984: 487-502. [12] NORMAN J H, BESENBRUCH G E, BROWN L C, et al. Thermochemical watersplitting cycle, Benchscale investigations and process engineering [R]. GAA16713, San Diego: General Atomics Corp, 1982. [13] KASAHARA S, HWANG G J, NAKAJIMA H, et al. Effects of process parameters of IS process on total thermal efficiency to produce Hydrogen from water [J]. J Chem Eng Jpn, 2003, 36(7): 887-899. [14] LEE B J, NO H C, YOON H J, et al. An optimal operating window for the Bunsen process in the I–S thermochemical cycle [J]. Int. J. Hydrogen Energy, 2008, 33(9): 2200-2210. [15] LEE B J, NO H C, YOON H J, et al. Development of a flowsheet for iodine–sulfur thermochemical cycle based on optimized Bunsen reaction [J]. Int. J. Hydrogen Energy, 2009, 34(5): 2133-2143. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|