Please wait a minute...
J4  2010, Vol. 44 Issue (6): 1108-1112    DOI: 10.3785/j.issn.1008-973X.2010.06.010
自动化技术、计算机技术     
基于HSI模型和Hough变换的指针式汽车仪表自动校验
周泓, 徐海儿, 耿晨歌
浙江大学 仪器科学与工程学系,浙江 杭州 310027
Automatic checking of pointer automotive dashboard based on HSI model and Hough transformation
ZHOU Hong, XU Hai-er, GENG Chen-ge
Department of Instrument Science and Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为了克服传统的汽车仪表人工校验普遍存在准确率不高的弊端,提出一种指针式汽车仪表自动校验算法.针对汽车仪表盘颜色信息丰富的特征和采集图像时目标物体周边有阴影的现象,将RGB模型下的表盘图像转到HSI(色调、饱和度、亮度)模型以消除阴影影响,并利用色调和饱和度分量作为特征参数进行图像分割,并采用Hough变换检测目标;分别计算出指针指向主要刻度线时相对于零刻度线的偏转角,并与相对应的标准偏转角比较,若超过允许误差范围则返回重调.对常用汽车仪表盘的自动校验结果表明该算法精度好,校验准确率高.

Abstract:

A novel approach for pointer automotive dashboard automatic checking was presented as the traditional manual checking method having a low accuracy. When taking images, the dashboard’s color information was high in abundance and there was a shadow around the object, so, the RGB model image was converted to HSI (Hue, Saturation, Intensity) model avoiding the influence of shadow. Then with the Hue and Saturation as two characteristic parameters, the image was segmented. After that, the objects were detected by means of the Hough transformation. The deflection angles, the movements of the pointer from the zero position, were calculated when the pointer pointing to the main marks. Comparing the deflection angle to the standard angle, the dashboard would be modified again if it was out of the error range. Experiments on the dashboard in the common use demonstrate that the proposed approach has a nice precision and increases the checking accuracy.

出版日期: 2010-07-16
:  TP 391.41  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

周泓, 徐海儿, 耿晨歌. 基于HSI模型和Hough变换的指针式汽车仪表自动校验[J]. J4, 2010, 44(6): 1108-1112.

ZHOU Hong, XU Hai-Er, GENG Chen-Ge. Automatic checking of pointer automotive dashboard based on HSI model and Hough transformation. J4, 2010, 44(6): 1108-1112.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.06.010        http://www.zjujournals.com/eng/CN/Y2010/V44/I6/1108

[1] 孙风杰,郭凤顺.基于图像处理技术的表盘指针角度识别研究\
[J\].中国电机工程学报,2005,25(16): 7378.

SUN Fengjie,GUO Fengshun. Studies of the recognition of pointer angle of dial based on image processing \
[J\]. Proceedings of the CSEE, 2005, 25(16): 7378.


[2] 王三武,戴亚文.多指针水表自动识别系统\
[J\].仪器仪表学报,2005,26(11):11781180.

WANG Sanwu,DAI Yawen. Automatic recognizing of Multipointer’s water meter using image processing\
[J\]. Chinese Journal of Scientific Instrument, 2005, 26(11): 11781180.


[3] 罗大成,王仕成,曾洪贵,等. 指针式仪表识别系统的设计\
[J\]. 激光与红外,2007,37(4): 377380.

LUO Dachen,WANG Shicheng, ZENG Honggui,et al. Design of recognition system of analog measuring instruments \
[J\].Laser and Infrared, 2007, 37(4): 377380.


[4] 刘晓芳,陈丹松,刘家锋,等.采用改进HSI模型的车牌区域检测和定位方法\
[J\].哈尔滨工业大学学报,2008,40(1): 8589.

LIU Xiaofang,CHENG Dansong,LIU Jiafeng. An approach to detection and location for license plate based on modified HSI color model \
[J\].Journal of Harbin Institute of Technology, 2008,40(1): 8589.


[5] ZHANG Yujin, YAO Yurong, HE Yun. Color image segmentation based on HSI model \
[J\]. High Technology Letter,1998,4(1): 2831.


[6] LUO Daisheng,HE Xiaohai. Triplet circular Hough transform for circle detection \
[J\].Journal of Electronics,2002,19(4): 356362.


[7] MAO Xia,LI Xingxin, XUE Yuli. Circle detection based on HSI color space\
[J\]. Computer Aided Drafting: Design and Manufacturing, 2005, 15(1): 3640.


[8] MATAS J, GALAMBOS C,  KITTLER J. Robust detection of lines using the progressive probabilistic hough transform \
[J\].Computer Vision and Image Understanding, 2000: 78(1):119137.


[9] SNYDER W E, QI Hairong. Machine vision \
[M\]. Beijing:China Machine Press, 2005: 111220.


[10] PA M. MARAGOS P, SCHAFER R W.Morphological system for multidimensional signal processing \
[J\]. Proceeding of the IEEE, 1990, 78(4): 690701.

[1] 杨玉婷, 史玉回, 夏顺仁. 基于讨论机制的头脑风暴优化算法[J]. J4, 2013, 47(10): 1705-1711.
[2] 朱晓恩, 郝欣, 夏顺仁. 基于Levy flight的特征选择算法[J]. J4, 2013, 47(4): 638-643.
[3] 孙创日,甄帅,夏顺仁. 基于吸引区域的多模态脑磁共振图像仿射配准[J]. J4, 2012, 46(9): 1722-1728.
[4] 谢迪, 童若锋, 唐敏, 冯阳. 具有高区分度的视频火焰检测方法[J]. J4, 2012, 46(4): 698-704.
[5] 戴渊明, 韦巍, 林亦宁. 基于颜色纹理特征的均值漂移目标跟踪算法[J]. J4, 2012, 46(2): 212-217.
[6] 李启雷, 金文光, 耿卫东. 基于无线惯性传感器的人体动作捕获方法[J]. J4, 2012, 46(2): 280-285.
[7] 刘晨彬,潘颖,张海石,黄峰平,夏顺仁. 基于磁共振图像的脑瘤MGMT表达状况检测算法[J]. J4, 2012, 46(1): 170-176.
[8] 钱诚, 张三元. 适用于目标跟踪的加权增量子空间学习算法[J]. J4, 2011, 45(12): 2240-2246.
[9] 曹颖, 郝欣, 朱晓恩, 夏顺仁. 基于自动随机游走的乳腺肿块分割算法[J]. J4, 2011, 45(10): 1753-1760.
[10] 吕谷来, 李建平, 李锵, 俞利兴, 朱松明, 楼建忠, 袁祎琳. 基于机器视觉的砧木定位识别方法[J]. J4, 2011, 45(10): 1766-1770.
[11] 赖小波,朱世强. 基于互相关信息的非参数变换立体匹配算法[J]. J4, 2011, 45(9): 1636-1642.
[12] 王金德, 寿黎但, 李晓燕, 陈刚. 基于多重分割捆绑特征的目标图像检索[J]. J4, 2011, 45(2): 259-266.
[13] 刘建明, 鲁东明, 葛蓉. 基于全局优化的图像修复及其在GPU上实现[J]. J4, 2011, 45(2): 247-252.
[14] 战江涛,刘强,柴春雷. 基于三维模型与Gabor小波的人脸特征点跟踪方法[J]. J4, 2011, 45(1): 30-36.
[15] 梁文锋,项志宇. 鲁棒的PTZ摄像机目标跟踪算法[J]. J4, 2011, 45(1): 59-63.