Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (6): 873-880    DOI: 10.3785/j.issn.1008-9209.2022.11.071
Animal sciences & veterinary medicines     
Comparisons on soluble expression and immunoreactivity of African swine fever virus CD2v protein expressed by different prokaryotic expression vectors
Mengke FENG1,2(),Xingbo WANG1,2,Lulu LIN1,2,Mingxian CUI1,2,Yan YAN1,2,Jiyong ZHOU1,2()
1.Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Key Laboratory of Animal Virology of Ministry of Agriculture and Rural Affairs, Hangzhou 310058, Zhejiang, China
Download: HTML   HTML (   PDF(2580KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The aim of this study was to systematically investigate the differences in the soluble expression level of the African swine fever virus (ASFV) CD2v protein by different prokaryotic expression vectors, and the immunoreactivities of the inclusion body and soluble CD2v proteins were compared using clinical anti-ASFV antibody-positive sera. Five prokaryotic expression vectors, namely, pCold-TF, pET28a, pMAL-C6T, pGEX-4T-1 and pET32a, were utilized to express the CD2v protein without the signal peptide and transmembrane region, respectively. The inclusion body CD2v protein expressed by the pET28a vector and the soluble CD2v protein expressed by the pCold-TF vector were purified by nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography, and the immunoreactivity of the purified proteins was detected by indirect enzyme-linked immunosorbent assay (ELISA). The results showed that the CD2v protein expressed by the pCold-TF vector was soluble mainly, while the CD2v protein expressed by the pMAL-C6T vector was insoluble (inclusion body) and soluble, and the CD2v protein expressed by the other vectors was mainly as inclusion body. The indirect ELISA results for clinical anti-ASFV antibody-positive sera showed that the immunoreactivity of soluble protein was significantly better than that of the inclusion body protein (P<0.05). The trigger factor (TF) tag of pCold-TF promoted the soluble expression of the CD2v protein, and the immunoreactivity of the expressed protein was greater than that of the inclusion body protein. This study lays the foundation for further immunogenicity research on the CD2v protein and provides a candidate strategy for the soluble expression of other important antigens.



Key wordsAfrican swine fever virus      CD2v protein      prokaryotic expression      soluble expression      immunoreactivity     
Received: 07 November 2022      Published: 25 December 2023
CLC:  S855.3  
Corresponding Authors: Jiyong ZHOU     E-mail: mengkefeng@zju.edu.cn;jyzhou@zju.edu.cn
Cite this article:

Mengke FENG,Xingbo WANG,Lulu LIN,Mingxian CUI,Yan YAN,Jiyong ZHOU. Comparisons on soluble expression and immunoreactivity of African swine fever virus CD2v protein expressed by different prokaryotic expression vectors. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(6): 873-880.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.11.071     OR     https://www.zjujournals.com/agr/Y2023/V49/I6/873


不同原核表达载体对非洲猪瘟病毒CD2v蛋白可溶性表达及免疫反应性比较

本研究旨在系统性地探究不同原核表达载体对非洲猪瘟病毒CD2v蛋白的可溶性表达差别,并利用临床非洲猪瘟病毒抗体阳性血清比较包涵体和可溶性CD2v蛋白的免疫反应性。利用5种原核表达载体pCold-TF、pET28a、pMAL-C6T、pGEX-4T-1、pET32a分别表达去除信号肽和跨膜区的非洲猪瘟病毒CD2v蛋白,利用镍-氨三乙酸(nickel-nitrilotriacetic acid, Ni-NTA)亲和层析法分别纯化源自pET28a和pCold-TF表达载体的包涵体和可溶性CD2v蛋白,并用间接酶联免疫吸附测定(enzyme-linked immunosorbent assay, ELISA)方法比较纯化蛋白的免疫反应性。结果显示,pCold-TF载体以表达可溶性蛋白为主,pMAL-C6T载体同时表达包涵体和可溶性蛋白,而其他载体主要表达包涵体蛋白。临床非洲猪瘟病毒抗体阳性血清检测数据显示,可溶性蛋白的免疫反应性显著优于包涵体蛋白(P<0.05)。pCold-TF载体的触发因子(trigger factor, TF)标签可促进CD2v蛋白的可溶性表达,其表达蛋白的免疫反应性优于包涵体蛋白。本研究结果为CD2v蛋白的免疫原性研究奠定了基础,亦为其他重要抗原的可溶性表达提供了思路。


关键词: 非洲猪瘟病毒,  CD2v蛋白,  原核表达,  可溶性表达,  免疫反应性 

表达载体

Expression vector

标签

Tag

重组蛋白分子量

Molecular weight of

recombinant protein/kDa

pET28aHis42
pET32aTrx62
pGEX-4T-1GST65
pMAL-C6TMBP87
pCold-TFTF85
Table 1 Different prokaryotic expression vector tags and molecular weights of recombinant proteins
Fig. 1 PCR identification results of recombinant plasmidsM: DNA marker; 1-5: Amplification products of pET-28a-CD2vΔSP-TM, pET32a-CD2vΔSP-TM, pGEX-4T-1-CD2vΔSP-TM, pMAL-C6T-CD2vΔSP-TM and pCold-TF-CD2vΔSP-TM recombinant plasmids, respectively; 6: Negative control.
Fig. 2 SDS-PAGE analysis of CD2v recombinant protein expression by five different prokaryotic expression vectorsA-E. pET28a-CD2vΔSP-TM, pET32a-CD2vΔSP-TM, pGEX-4T-1-CD2vΔSP-TM, pMAL-C6T-CD2vΔSP-TM and pCold-TF-CD2vΔSP-TM recombinant plasmids, respectively. M: Relative molecular weight of protein; 1: Uninduced bacteria; 2: Induced bacteria; 3: Bacterial supernatant by ultrasonic lysis after induction; 4: Bacterial precipitation by ultrasonic lysis after induction.
Fig. 3 Purification results of CD2v-TF recombinant proteinA. SDS-PAGE analysis; B. Western blotting analysis. M: Relative molecular weight of protein; 1-3: Heterologous proteins eluted with 20 mmol/L imidazole; 4-6: Target protein CD2v-TF eluted with 50 mmol/L imidazole; 7: Purified target protein CD2v-TF; 8: Induced bacteria; 9: Uninduced bacteria (control).
Fig. 4 Purification results of CD2v-His recombinant proteinA. SDS-PAGE analysis; B. Western blotting analysis. M: Relative molecular weight of protein; 1, 7: Uninduced bacteria (control); 2, 6: Induced bacteria; 3: Eluted heterologous protein; 4: Eluted target protein CD2v-His; 5: Purified target protein CD2v-His.
Fig. 5 Immunoreactivity of two CD2v recombinant proteins detected by indirect ELISASingle asterisk (*) indicates significant differences compared with the CD2v-His recombinant protein group at the 0.05 probability level, and n=3.
[1]   YOON K J, ZIMMERMAN J J, MORILLA A. Trends in Emerging Viral Infections of Swine[M]. New York, USA: John Wiley & Sons, 2008.
[2]   ZHOU X T, LI N, LUO Y Z, et al. Emergence of African swine fever in China, 2018[J]. Transboundary and Emerging Diseases, 2018, 65(6): 1482-1484. DOI: 10.1111/tbed.12989
doi: 10.1111/tbed.12989
[3]   KARGER A, PÉREZ-NÚÑEZ D, URQUIZA J, et al. An update on African swine fever virology[J]. Viruses, 2019, 11(9): 864. DOI: 10.3390/v11090864
doi: 10.3390/v11090864
[4]   WANG Y, KANG W F, YANG W P, et al. Structure of African swine fever virus and associated molecular mechanisms underlying infection and immunosuppression: a review[J]. Frontiers in Immunology, 2021, 12: 715582. DOI: 10.3389/fimmu.2021.715582
doi: 10.3389/fimmu.2021.715582
[5]   WANG N, ZHAO D M, WANG J L, et al. Architecture of African swine fever virus and implications for viral assembly[J]. Science, 2019, 366(6465): 640-644. DOI: 10.1126/science.aaz1439
doi: 10.1126/science.aaz1439
[6]   KAY-JACKSON P C, GOATLEY L C, COX L, et al. The CD2v protein of African swine fever virus interacts with the actin-binding adaptor protein SH3P7[J]. Journal of General Virology, 2004, 85(Pt 1): 119-130. DOI: 10.1099/vir.0.19435-0
doi: 10.1099/vir.0.19435-0
[7]   何庆,邹亚文,王东亮,等.非洲猪瘟病毒跨膜蛋白CD2v的结构与功能研究进展[J].病毒学报,2021,37(5):1244-1251. DOI:10.13242/j.cnki.bingduxuebao.004023
HE Q, ZOU Y W, WANG D L, et al. Research advances in structure and function of transmembrane protein CD2v of African swine fever virus[J]. Chinese Journal of Virology, 2021, 37(5): 1244-1251. (in Chinese with English abstract)
doi: 10.13242/j.cnki.bingduxuebao.004023
[8]   RUIZ-GONZALVO F, RODRÍGUEZ F, ESCRIBANO J M. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus[J]. Virology, 1996, 218(1): 285-289. DOI: 10.1006/viro.1996.0193
doi: 10.1006/viro.1996.0193
[9]   JANCOVICH J K, CHAPMAN D, HANSEN D T, et al. Immunization of pigs by DNA prime and recombinant vaccinia virus boost to identify and rank African swine fever virus immunogenic and protective proteins[J]. Journal of Virology, 2018, 92(8): e02219-17. DOI: 10.1128/JVI.02219-17
doi: 10.1128/JVI.02219-17
[10]   RKOVÁ E, MÜLLER P, VOJTĚEK B. Protein expression and purification[J]. Klinicka Onkologie, 2014, 27(): 92-98. DOI: 10.14735/amko20141s92
doi: 10.14735/amko20141s92
[11]   李勇坤.非洲猪瘟病毒CD2v蛋白杆状病毒表达及其单克隆抗体制备[D].陕西,杨凌:西北农林科技大学,2022. DOI:10.17660/ejhs.2022/005
LI Y K. Expression of African swine fever CD2v protein by baculovirus system and preparation of monoclonal antibody[D]. Yangling, Shaanxi: Northwest A&F University, 2022. (in Chinese with English abstract)
doi: 10.17660/ejhs.2022/005
[12]   LÜ C J, ZHAO Y, JIANG L L, et al. Development of a dual ELISA for the detection of CD2v-unexpressed lower-virulence mutational ASFV[J]. Life, 2021, 11(11): 1214. DOI: 10.3390/life11111214
doi: 10.3390/life11111214
[13]   蒋智勇,蔡汝健,李艳,等.基于CHO-K1细胞稳定表达的非洲猪瘟病毒CD2v蛋白的间接ELISA抗体检测方法的建立[J].中国兽医科学,2022,52(2):135-142. DOI:10.16656/j.issn.1673-4696.2022.0029
JIANG Z Y, CAI R J, LI Y, et al. Development of an indirect ELISA based on African swine fever virus CD2v protein stably expressed in CHO-K1 cells[J]. Chinese Veterinary Science, 2022, 52(2): 135-142. (in Chinese with English abstract)
doi: 10.16656/j.issn.1673-4696.2022.0029
[14]   HUANG C J, LIN H, YANG X M. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements[J]. Journal of Industrial Microbiology & Bio-technology, 2012, 39(3): 383-399. DOI: 10.1007/s10295-011-1082-9
doi: 10.1007/s10295-011-1082-9
[15]   ASSENBERG R, WAN P T, GEISSE S, et al. Advances in recombinant protein expression for use in pharmaceutical research[J]. Current Opinion in Structural Biology, 2013, 23(3): 393-402. DOI: 10.1016/j.sbi.2013.03.008
doi: 10.1016/j.sbi.2013.03.008
[16]   ROSANO G L, CECCARELLI E A. Recombinant protein expression in Escherichia coli: advances and challenges[J]. Frontiers in Microbiology, 2014, 5: 172. DOI: 10.3389/fmicb.2014.00172
doi: 10.3389/fmicb.2014.00172
[17]   胡巧云,黄小久,唐小明,等.非洲猪瘟CD2v截短蛋白的原核表达及间接ELISA方法的建立[J].中国兽医学报,2022,42(6):1103-1108. DOI:10.16303/j.cnki.1005-4545.2022.06.01
HU Q Y, HUANG X J, TANG X M, et al. Prokaryotic expression of CD2v truncated protein of African swine fever virus and establishment of an indirect CD2v-ELISA[J]. Chinese Journal of Veterinary Science, 2022, 42(6): 1103-1108. (in Chinese with English abstract)
doi: 10.16303/j.cnki.1005-4545.2022.06.01
[18]   任肖,吴竞,于海男,等.非洲猪瘟病毒Georgia 2007/1株CD2v蛋白的原核表达及多克隆抗体制备[J].中国畜牧兽医,2019,46(12):3698-3706. DOI:10.16431/j.cnki.1671-7236.2019.12.029
REN X, WU J, YU H N, et al. Prokaryotic expression and polyclonal antibody preparation of African swine fever virus Georgia 2007/1 strain CD2v protein[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(12): 3698-3706. (in Chinese with English abstract)
doi: 10.16431/j.cnki.1671-7236.2019.12.029
[19]   于浩洋,吴绍强,王彩霞,等.非洲猪瘟CD2v胞外区基因片段的真核表达及其多克隆抗体的制备[J].中国兽医科学,2021,51(1):45-52. DOI:10.16656/j.issn.1673-4696.2021.0012
YU H Y, WU S Q, WANG C X, et al. Eukaryotic expression the CD2v extracellular gene fragment of African swine fever virus and characterization of its polyclonal antibodies[J]. Chinese Veterinary Science, 2021, 51(1): 45-52. (in Chinese with English abstract)
doi: 10.16656/j.issn.1673-4696.2021.0012
[20]   钟秋萍,于婉琪,薄宗义,等.非洲猪瘟病毒外膜蛋白CD2v的原核表达及其免疫特性的研究[J].中国兽医科学,2020,50(6):689-695. DOI:10.16656/j.issn.1673-4696.2020.0089
ZHONG Q P, YU W Q, BO Z Y, et al. Prokaryotic expression and immunological characterization of African swine fever virus out membrane CD2v protein[J]. Chinese Veterinary Science, 2020, 50(6): 689-695. (in Chinese with English abstract)
doi: 10.16656/j.issn.1673-4696.2020.0089
[21]   COSTA S, ALMEIDA A, CASTRO A, et al. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system[J]. Frontiers in Microbiology, 2014, 5: 63. DOI: 10.3389/fmicb.2014.00063
doi: 10.3389/fmicb.2014.00063
[22]   周星怡,牛冬,李玉峰.非洲猪瘟病原学与传播特点及防控方法的研究进展[J].中国兽医科学,2022,52(9):1172-1180. DOI:10.16656/j.issn.1673-4696.2022.0138
ZHOU X Y, NIU D, LI Y F. Advancement in etiology, transmission and prevention and control of African swine fever[J]. Chinese Veterinary Science, 2022, 52(9): 1172-1180. (in Chinese with English abstract)
doi: 10.16656/j.issn.1673-4696.2022.0138
[23]   GLADUE D P, O’DONNELL V, RAMIREZ-MEDINA E, et al. Deletion of CD2-like (CD2v) and C-type lectin-like (EP153R) genes from African swine fever virus Georgia-∆9GL abrogates its effectiveness as an experimental vaccine[J]. Viruses, 2020, 12(10): 1185. DOI: 10.3390/v12101185
doi: 10.3390/v12101185
[24]   MONTEAGUDO P L, LACASTA A, LÓPEZ E, et al. BA71ΔCD2: a new recombinant live attenuated African swine fever virus with cross-protective capabilities[J]. Journal of Virology, 2017, 91(21): e01058-17. DOI: 10.1128/JVI.01058-17
doi: 10.1128/JVI.01058-17
[25]   FENG Z H, CHEN J H, LIANG W W, et al. The recombinant pseudorabies virus expressing African swine fever virus CD2v protein is safe and effective in mice[J]. Virology Journal, 2020, 17(1): 180. DOI: 10.1186/s12985-020-01450-7
doi: 10.1186/s12985-020-01450-7
[26]   TSUMOTO K, EJIMA D, KUMAGAI I, et al. Practical considerations in refolding proteins from inclusion bodies[J]. Protein Expression and Purification, 2003, 28(1): 1-8. DOI: 10.1016/s1046-5928(02)00641-1
doi: 10.1016/s1046-5928(02)00641-1
[27]   NARAYAN G, AGRAWAL A, JOSHI N, et al. Protein production and purification of a codon-optimized human NGN3 transcription factor from E. coli [J]. The Protein Journal, 2021, 40(6): 891-906. DOI: 10.1007/s10930-021-10020-x
doi: 10.1007/s10930-021-10020-x
[28]   SMITH D B, JOHNSON K S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase[J]. Gene, 1988, 67(1): 31-40. DOI: 10.1016/0378-1119(88)90005-4
doi: 10.1016/0378-1119(88)90005-4
[29]   房康.通过使用MBP标签高水平原核表达纯化死亡结构域家族蛋白及炎症小体NLRP1与ASC的结构生物学研究[D].安徽,合肥:中国科学技术大学,2018. DOI:10.7754/clin.lab.2017.170922
FANG K. High-level prokaryotic expression and purification of death domain superfamily with MBP tag and structural basis of NLRP1 and ASC inflammasome[D]. Hefei, Anhui: University of Science and Technology of China, 2018. (in Chinese with English abstract)
doi: 10.7754/clin.lab.2017.170922
[30]   尹鑫,刘澜澜,贾莹,等.鸡氨肽酶N的高效可溶性表达及生物学功能分析[J].生物工程学报,2010,26(4):470-475. DOI:10.13345/j.cjb.2010.04.014
YIN X, LIU L L, JIA Y, et al. Expression and biological function analysis of chicken aminopeptidase N[J]. Chinese Journal of Biotechnology, 2010, 26(4): 470-475. (in Chinese with English abstract)
doi: 10.13345/j.cjb.2010.04.014
[1] Yuanxing DAI,Liuming GUO,Jing HE,Zhengrong SHEN,Yanfei GENG,Mingfang Lü,Zhengjie YUAN,Jing LI,Hengmu ZHANG. Preparation and application of polyclonal antibody against a cysteine-rich protein encoded by Chinese wheat mosaic virus[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 677-686.
[2] Ziyi WANG,Zi’an JIN,Chenhe LU,Zhi QIAO,Shengwen WANG,Yan YAN,Jiyong ZHOU,Xiaojuan ZHENG. Preparation of polyclonal antibodies and subcellular localization of non-structural protein 3 encoded by feline coronavirus[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 744-754.
[3] Dan ZHANG,Shuting LU,Chenhe LU,Ziyi WANG,Lihua XU,Yixuan CHEN,Shengwen WANG,Zi’an JIN,Chengzhang NI,Jiyong ZHOU,Xiaojuan ZHENG. Soluble expression of nucleocapsid protein of feline coronavirus and reactivity identification of its polyclonal antibody[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 424-434.
[4] Tong ZHANG,Yiping WANG,Yang GE,Eric NTIRI,Wenwu ZHOU. Identification and functional analysis of α-farnesene synthase gene from the cabbage Brassica oleracea[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 182-192.
[5] YANG Yimin, PAN Lingtao, ZHUANG Haohan, SUN Hongchao, YANG Yi, CHEN Xueqiu, DU Aifang. Prokaryotic expression of Cryptosporidium parvum mucin CGD5_2060 and its role in adhesion[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 230-236.
[6] WANG Jing,LIU Li,ZHANG Zhiming,ZHAO Maojun,PAN Guangtang. Cloning and expression analysis of pathogenesis‐related protein 1 gene in maize[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(1): 35-42.
[7] DING Mei-hui,JIN Feng,SHEN Li-rong,CHEN Zheng-xian. Expression of Acc-royalisin from royal jelly of Apis cerana cerana in Escherichia coli and preparation of its polyclonal antibody[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2010, 36(6): 609-614.
[8] GE Lin-Quan, ZHOU Guo-Xin, WANG Qi, ZHU Shu-De, LOU Yong-Gen. [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2009, 35(4): 365-371.