Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (5): 677-686    DOI: 10.3785/j.issn.1008-9209.2023.02.011
Special Topic: Major Bacterial and Viral Diseases in Crops     
Preparation and application of polyclonal antibody against a cysteine-rich protein encoded by Chinese wheat mosaic virus
Yuanxing DAI1,2(),Liuming GUO2,Jing HE1,2,Zhengrong SHEN1,2,Yanfei GENG2,Mingfang Lü2,Zhengjie YUAN2,Jing LI2,Hengmu ZHANG2()
1.College of Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
2.Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
Download: HTML   HTML (   PDF(3859KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Chinese wheat mosaic virus (CWMV) is one of the most important pathogens causing mosaic disease in wheat and has threatened the yield and quality of wheat for a long time. Cysteine-rich protein (CRP) of CWMV plays important and complex roles in viral infection. To further study CRP functions and CWMV infection mechanisms, the CRP coding region was amplified by reverse transcription-polymerase chain reaction (RT-PCR) from leaves of CWMV-infected wheat and cloned into the prokaryotic expression vector pET-32a. The recombinant plasmid pET-CRP was transformed into Escherichia coli BL21 (DE3) for inducible expression. The recombinant CRP was purified by nickel-column affinity chromatography and used as an antigen to immunize New Zealand white rabbits for polyclonal antibody preparation. A series of immunological assays, including Western blot, indirect enzyme-linked immunosorbent assay (ELISA) and dot ELISA, showed that the purified CRP antibody had high specificity, and its titer was as high as 1∶4 096 000, which was four times higher than that of the unpurified antibody. The antibody could recognize 0.5 ng antigen, showing its high sensitivity. In addition, the purified CRP antibody could specifically and sensitively recognize native CRP even at a 1∶120 000 dilution. In conclusion, the polyclonal antibody can be not only used for precise diagnosis of the CWMV-infected plant samples from fields, but also applied to detect CRP expressed transiently in plants, which lays a foundation for subsequent detection, quantification and subcellular localization of CRP.



Key wordsChinese wheat mosaic virus      cysteine-rich protein      prokaryotic expression      protein purification      polyclonal antibody     
Received: 01 February 2023      Published: 03 November 2023
CLC:  S435.121.4  
Corresponding Authors: Hengmu ZHANG     E-mail: dai15979596433@163.com;zhhengmu@tsinghua.org.cn
Cite this article:

Yuanxing DAI,Liuming GUO,Jing HE,Zhengrong SHEN,Yanfei GENG,Mingfang Lü,Zhengjie YUAN,Jing LI,Hengmu ZHANG. Preparation and application of polyclonal antibody against a cysteine-rich protein encoded by Chinese wheat mosaic virus. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 677-686.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.02.011     OR     https://www.zjujournals.com/agr/Y2023/V49/I5/677


中国小麦花叶病毒富含半胱氨酸蛋白多克隆抗体的制备与应用

中国小麦花叶病毒(Chinese wheat mosaic virus, CWMV)是小麦花叶病的重要病原体之一,长期威胁小麦的产量和品质;CWMV富含半胱氨酸蛋白(cysteine-rich protein, CRP)在病毒侵染过程中具有重要而复杂的功能。为了深入研究CRP的功能和CWMV侵染机制,本研究采用反转录聚合酶链反应(reverse transcription-polymerase chain reaction, RT-PCR)从CWMV侵染的小麦叶片中获得CRP基因编码区,将其克隆至原核表达载体pET-32a上,并将重组质粒pET-CRP转化至大肠埃希菌BL21(DE3)感受态细胞中进行诱导表达;通过镍柱亲和层析法纯化CRP重组蛋白,并用作抗原免疫新西兰白兔,制备多克隆抗体。蛋白质印迹法、间接酶联免疫吸附试验(enzyme-linked immunosorbent assay, ELISA)和斑点ELISA分析结果显示:纯化的CRP抗体不仅具有高度的特异性,而且效价高达1∶4 096 000,是未纯化抗体效价的4倍;该抗体能识别0.5 ng抗原,显示出较高的灵敏度;在1∶120 000稀释条件下,该抗体能特异且灵敏地识别天然CRP。综上所述,本研究所制备的CRP抗体不但可用于田间CWMV病株样品的精准诊断,还可用于植物体内瞬时表达CRP的检测分析,为后续CRP检测、定量分析及其亚细胞定位等研究提供了依据。


关键词: 中国小麦花叶病毒,  富含半胱氨酸蛋白,  原核表达,  蛋白质纯化,  多克隆抗体 

引物名称

Primer name

引物序列(5→3

Primer sequence (5→3)

限制性内切酶

Restriction enzyme

pET-CRP-FGCTGATATCGGATCCATGACTACTGGTACTCATTCTBamHⅠ
pET-CRP-RTTGTCGACGGAGCTCTTACTCCACACGAGTCTTCTTSac
CRP-FATGACTACTGGTACTCATTCT
CRP-RTTACTCCACACGAGTCTTCTT
T7TAATACGACTCACTATAGGG
T7-terGCTAGTTATTGCTCAGCGG
pCV-35S::CRP-FGGTACCCGGGGATCCATGACTACTGGTACTCATTCTBamHⅠ
TRV::CRP-FGACAAGACCCTGCAGATGACTACTGGTACTCATTCTPst
PVX::CRP-FCCAGCTAGCATCGATATGACTACTGGTACTCATTCTCla
CRP-Flag-RGGCGAATTGGTCGACCTCCACACGAGTCTTCTTCSal
Table 1 Primers used for polymerase chain reaction amplification
Fig. 1 SDS-PAGE analysis of recombinant CRP (A) and specificity analysis of the antibody against CRP by Western blot (B, C)In the Fig. A, M: Protein marker; Lane 1: IPTG-induced host bacteria containing pET-32a; Lane 2: IPTG-uninduced host bacteria containing pET-CRP; Lanes 3-5: Host bacteria containing pET-CRP induced by IPTG for 1, 2, and 3 h, respectively; Lane 6: Purified recombinant CRP. In the Fig. B, M: Protein marker; Lane 1: IPTG-induced host bacteria containing pET-32a; Lane 2: Host bacteria containing pET-CRP induced by IPTG for 2 h. In the Fig. C, M: Protein marker; Lane 1: Healthy wheat leaves; Lane 2: CWMV-infected wheat leaves; Lane 3: BYDV-infected wheat leaves; Lane 4: ToMV-infected N. benthamiana leaves; Lane 5: TuMV-infected N. benthamiana leaves.
Fig. 2 Analysis of titers of unpurified and purified CRP antibodies by indirect ELISA
Fig. 3 Western blot assay of total protein samples extracted from CWMV-infected plant leaves using the gradient dilution antibodiesM: Protein marker; Lanes 1-5: Antibody dilution ratios of 1∶40 000/60 000/80 000/100 000/120 000, respectively.
Fig. 4 Sensitivity analysis of CRP antibodies by dot ELISA
Fig. 5 Sensitivity analysis of CRP antibodies by Western blotThe antibody dilution ratio is 1∶80 000. In the Fig. A, M: Protein marker; Lanes 1-5: 4, 2, 1, 0.5, 0.25 ng purified recombinant CRP samples, respectively. In the Fig. B, M: Protein marker; Lanes 1-5: Total protein samples extracted from CWMV-infected plant leaves, which are diluted by the ratios of 1∶4/6/8/10/12, respectively.
Fig. 6 Detection of the diseased wheat plants from fields by Western blot (A) and RT-PCR (B)In the Fig. A, M: Protein marker; Lanes 1-9: Samples of wheat leaves. In the Fig. B, M: DNA marker; +: Samples of CWMV-infected wheat leaves (positive control); -: Samples of healthy wheat leaves (negative control); Lanes 1-9: Samples of wheat leaves.
Fig. 7 Detection of CRP by transient expression in N. bentha-miana leaves using Western blotIn the Fig. A, CRP antibody is used as primary antibody; in the Fig. B, Flag tag antibody is used as primary antibody. M: Protein marker; Lanes 1 and 8: CWMV-infected leaves; Lanes 2 and 9: Empty pCV vector (control); Lanes 3 and 10: pCV-35S::CRP-3×Flag; Lanes 4 and 11: TRV-infected leaves; Lanes 5 and 12: Co-infiltration of TRV1 and TRV::CRP-3×Flag; Lanes 6 and 13: PVX-infected leaves; Lanes 7 and 14: PVX::CRP-3×Flag.
[1]   YE R, ZHENG T, CHEN J P, et al. Characterization and partial sequence of a new furovirus of wheat in China[J]. Plant Pathology, 1999, 48(3): 379-387. DOI: 10.1046/J.1365-3059.1999.00358.X
doi: 10.1046/J.1365-3059.1999.00358.X
[2]   DIAO A P, CHEN J P, YE R, et al. Complete sequence and genome properties of Chinese wheat mosaic virus, a new furovirus from China[J]. Journal of General Virology, 1999, 80(5): 1141-1145. DOI: 10.1099/0022-1317-80-5-1141
doi: 10.1099/0022-1317-80-5-1141
[3]   GUO L M, HE J, LI J, et al. Chinese wheat mosaic virus: a long-term threat to wheat in China[J]. Journal of Integrative Agriculture, 2019, 18(4): 821-829. DOI: 10.1016/S2095-3119(18)62047-7
doi: 10.1016/S2095-3119(18)62047-7
[4]   ADAMS M J. Transmission of plant viruses by fungi[J]. Annals of Applied Biology, 1991, 118(2): 479-492. DOI: 10.1111/j.1744-7348.1991.tb05649.x
doi: 10.1111/j.1744-7348.1991.tb05649.x
[5]   ESTES A P, BRAKKE M K. Correlation of Polymyxa graminis with transmission of soil-borne wheat mosaic virus[J]. Virology, 1966, 28(4): 772-774. DOI: 10.1016/0042-6822(66)90266-2
doi: 10.1016/0042-6822(66)90266-2
[6]   CHEN J P. Occurrence of fungally transmitted wheat mosaic viruses in China[J]. Annals of Applied Biology, 1993, 123(1): 55-61. DOI: 10.1111/j.1744-7348.1993.tb04072.x
doi: 10.1111/j.1744-7348.1993.tb04072.x
[7]   YANG J, ZHANG F, CAI N J, et al. A furoviral replicase recruits host HSP70 to membranes for viral RNA replication[J]. Scientific Reports, 2017, 7(1): 45590. DOI: 10.1038/srep45590
doi: 10.1038/srep45590
[8]   ANDIKA I B, ZHENG S L, TAN Z L, et al. Endoplasmic reticulum export and vesicle formation of the movement protein of Chinese wheat mosaic virus are regulated by two transmembrane domains and depend on the secretory pathway[J]. Virology, 2013, 435(2): 493-503. DOI: 10.1016/j.virol.2012.10.024
doi: 10.1016/j.virol.2012.10.024
[9]   SUN L Y, ANDIKA I B, SHEN J F, et al. The CUG-initiated larger form coat protein of Chinese wheat mosaic virus binds to the cysteine-rich RNA silencing suppressor[J]. Virus Research, 2013, 177(1): 66-74. DOI: 10.1016/j.virusres.2013.07.013
doi: 10.1016/j.virusres.2013.07.013
[10]   SUN L Y, ANDIKA I B, KONDO H, et al. Identification of the amino acid residues and domains in the cysteine-rich protein of Chinese wheat mosaic virus that are important for RNA silencing suppression and subcellular localization[J]. Molecular Plant Pathology, 2013, 14(3): 265-278. DOI: 10.1111/mpp.12002
doi: 10.1111/mpp.12002
[11]   YANG J, ZHANG T Y, LIAO Q S, et al. Chinese wheat mosaic virus-induced gene silencing in monocots and dicots at low temperature[J]. Frontiers in Plant Science, 2018, 9(1): 1627. DOI: 10.3389/fpls.2018.01627
doi: 10.3389/fpls.2018.01627
[12]   YANG J, ZHANG F, XIE L, et al. Functional identification of two minor capsid proteins from Chinese wheat mosaic virus using its infectious full-length cDNA clones[J]. Journal of General Virology, 2016, 97(9): 2441-2450. DOI: 10.1099/jgv.0.000532
doi: 10.1099/jgv.0.000532
[13]   CHEN X, HE L, XU M Z, et al. Binding between elongation factor 1A and the 3 ´ -UTR of Chinese wheat mosaic virus is crucial for virus infection[J]. Molecular Plant Pathology, 2021, 22(11): 1383-1398. DOI: 10.1111/mpp.13120
doi: 10.1111/mpp.13120
[14]   LI J, FENG H M, LIU S, et al. Phosphorylated viral protein evades plant immunity through interfering the function of RNA-binding protein[J]. PLoS Pathogens, 2022, 18(3): e1010412. DOI: 10.1371/journal.ppat.1010412
doi: 10.1371/journal.ppat.1010412
[15]   YUE N, JIANG Z H, ZHANG X, et al. Palmitoylation of γb protein directs a dynamic switch between Barley stripe mosaic virus replication and movement[J]. The EMBO Journal, 2022, 41(13): e110060. DOI: 10.15252/embj.2021110060
doi: 10.15252/embj.2021110060
[16]   LI Z L, YANG X X, LI W L, et al. SAMDC3 enhances resistance to Barley stripe mosaic virus by promoting the ubiquitination and proteasomal degradation of viral γb protein[J]. New Phytologist, 2022, 234(2): 618-633. DOI: 10.1111/nph.17993
doi: 10.1111/nph.17993
[17]   ZHANG X, DONG K, XU K, et al. Barley stripe mosaic virus infection requires PKA-mediated phosphorylation of γb for suppression of both RNA silencing and the host cell death response[J]. New Phytologist, 2018, 218(4): 1570-1585. DOI: 10.1111/nph.15065
doi: 10.1111/nph.15065
[18]   宗伟,程赛凤,马斯琦,等.Western blot[DB/OL]. Bio-101, 2018:e1010130[2023-01-18]. . DOI:10.21769/BioProtoc.1010130
ZONG W, CHENG S F, MA S Q, et al. Western blot[DB/OL]. Bio-101, 2018: e1010130 [2023-01-18]. (in Chinese)
doi: 10.21769/BioProtoc.1010130
[19]   陈新建,陈梅英,赵会杰.免疫学技术在植物科学中的应用[M].北京:中国农业大学出版社,1998.
CHEN X J, CHEN M Y, ZHAO H J. Application of Immunology Techniques in Plant Science[M]. Beijing: China Agricultural University Press, 1998. (in Chinese)
[20]   SHANG H L, XIE Y, ZHOU X P, et al. Monoclonal antibody-based serological methods for detection of cucumber green mottle mosaic virus[J]. Virology Journal, 2011, 8(1): 228. DOI: 10.1186/1743-422X-8-228
doi: 10.1186/1743-422X-8-228
[21]   YUAN Z J, GENG Y F, DAI Y X, et al. A fijiviral nonstructural protein triggers cell death in plant and bacterial cells via its transmembrane domain[J]. Molecular Plant Pathology, 2023, 24(1): 59-70. DOI: 10.1111/mpp.13277
doi: 10.1111/mpp.13277
[22]   孔凡惠,脱建波,魏娇,等.中国小麦花叶病毒CP和CRP蛋白的原核表达、抗血清制备及RNA2侵染性克隆构建[J].山东农业科学,2015,47(8):6-10. DOI:10.14083/j.issn.1001-4942.2015.08.002
KONG F H, TUO J B, WEI J, et al. Prokaryotic expression and antiserum production of Chinese wheat mosaic virus (CWMV) CP and CRP and construction of their RNA2 infection clones[J]. Shandong Agricultural Sciences, 2015, 47(8): 6-10. (in Chinese with English abstract)
doi: 10.14083/j.issn.1001-4942.2015.08.002
[23]   XU L, CHEN J P, YE R, et al. Cloning and expression of the Chinese wheat mosaic virus RNA2 coat protein readthrough and 19 ku cysteine-rich domains and localization of these proteins[J]. Chinese Science Bulletin, 2002, 47(12): 1019-1023. DOI: 10.1007/BF02907574
doi: 10.1007/BF02907574
[24]   吴斌,姜珊珊,张眉,等.山东省小麦土传花叶病毒病的分布与病原鉴定[J].麦类作物学报,2018,38(2):246-252. DOI:10.7606/j.issn.1009-1041.2018.02.17
WU B, JIANG S S, ZHANG M, et al. Distribution and pathogen identification of wheat soil-borne mosaic virus disease in Shandong Province[J]. Journal of Triticeae Crops, 2018, 38(2): 246-252. (in Chinese with English abstract)
doi: 10.7606/j.issn.1009-1041.2018.02.17
[25]   刘欢,李娜,周雪平,等.中国小麦花叶病毒(CWMV)单克隆抗体制备及其检测应用[J].农业生物技术学报,2015,23(6):711-719. DOI:10.3969/j.issn.1674-7968.2015.06.002
LIU H, LI N, ZHOU X P, et al. Development of monoclonal antibodies against Chinese wheat mosaic virus (CWMV) and their application[J]. Journal of Agricultural Biotechnology, 2015, 23(6): 711-719. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2015.06.002
[26]   任春梅,程兆榜,朱慧,等.3种麦类土传花叶病毒的多抗制备及检测应用[J].江苏农业科学,2014,42(11):143-146. DOI:10.15889/j.issn.1002-1302.2014.11.049
REN C M, CHENG Z B, ZHU H, et al. Preparation and detection application of multiple antibodies to three wheat soil-borne mosaic viruses[J]. Jiangsu Agricultural Sciences, 2014, 42(11): 143-146. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2014.11.049
[27]   叶荣,郑滔,徐磊,等.山东烟台小麦土传病毒病由小麦黄花叶病毒和土传小麦花叶病毒相关病毒复合侵染所致[J].病毒学报,2000,16(1):80-82. DOI:10.13242/j.cnki.bingduxuebao.001213
YE R, ZHENG T, XU L, et al. Co-infection of wheat yellow mosaic virus and rod-shaped virus related to soil-borne wheat mosaic virus on winter wheat in Yantai District[J]. Chinese Journal of Virology, 2000, 16(1): 80-82. (in Chinese with English abstract)
doi: 10.13242/j.cnki.bingduxuebao.001213
[28]   张芬,蔡年俊,羊健,等.中国小麦花叶病毒(CWMV)复制酶基因在病株体内的表达分析[J].植物病理学报,2017,47(5):640-646. DOI:10.13926/j.cnki.apps.000110
ZHANG F, CAI N J, YANG J, et al. Expression assays of replicase genes from Chinese wheat mosaic virus in infected plants[J]. Acta Phytopathologica Sinica, 2017, 47(5): 640-646. (in Chinese with English abstract)
doi: 10.13926/j.cnki.apps.000110
[29]   沃恩康,郑滔,张巧艳,等.中国小麦花叶病毒运动蛋白基因的克隆及其表达[J].科技通报,2006,22(3):319-322. DOI:10.13774/j.cnki.kjtb.2006.03.008
WO E K, ZHENG T, ZHANG Q Y, et al. Cloning and expression of movement protein gene of Chinese wheat mosaic virus(CWMV)[J]. Bulletin of Science and Technology, 2006, 22(3): 319-322. (in Chinese with English abstract)
doi: 10.13774/j.cnki.kjtb.2006.03.008
[1] Dan ZHANG,Shuting LU,Chenhe LU,Ziyi WANG,Lihua XU,Yixuan CHEN,Shengwen WANG,Zi’an JIN,Chengzhang NI,Jiyong ZHOU,Xiaojuan ZHENG. Soluble expression of nucleocapsid protein of feline coronavirus and reactivity identification of its polyclonal antibody[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 424-434.
[2] Tong ZHANG,Yiping WANG,Yang GE,Eric NTIRI,Wenwu ZHOU. Identification and functional analysis of α-farnesene synthase gene from the cabbage Brassica oleracea[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 182-192.
[3] Fangfang YANG,Jiahui LI,Sainan ZHANG,Zhen WANG,Zhiyin LIAO,Shoufeng WANG. Secretory expression of recombinant human acetylcholinesterase gene in Pichia pastoris and evaluation of its sensitivity to pesticides[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 317-324.
[4] ZHANG Qiaoyan, SHAO Fengjin, YU Xiangqian, TAN Xun. Prokaryotic expression of extracellular domain of avian CD133 protein and preparation of polyclonal antibody against CD133[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 743-747.
[5] YANG Yimin, PAN Lingtao, ZHUANG Haohan, SUN Hongchao, YANG Yi, CHEN Xueqiu, DU Aifang. Prokaryotic expression of Cryptosporidium parvum mucin CGD5_2060 and its role in adhesion[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 230-236.
[6] ZHANG Hua mei,LI Yin lai,PAN Xi ping,JIANG Ai lan,YU Zhen zhen,SHI Man ling. Preparation of polyclonal antibody against dicamba and establishment of indirect competitive ELISA for dicamba detection.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(2): 153-158.
[7] WANG Jing,LIU Li,ZHANG Zhiming,ZHAO Maojun,PAN Guangtang. Cloning and expression analysis of pathogenesis‐related protein 1 gene in maize[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(1): 35-42.
[8] DING Mei-hui,JIN Feng,SHEN Li-rong,CHEN Zheng-xian. Expression of Acc-royalisin from royal jelly of Apis cerana cerana in Escherichia coli and preparation of its polyclonal antibody[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2010, 36(6): 609-614.
[9] SHANG Hai- li,ZHOU Xue- ping,WU Jian-xiang. Polyclonal antibody- based dot-ELISA and immunocapture- RT- PCR for Cucumber green mottle mosaic virus detection"[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2010, 36(5): 485-490.
[10] GE Lin-Quan, ZHOU Guo-Xin, WANG Qi, ZHU Shu-De, LOU Yong-Gen. [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2009, 35(4): 365-371.