Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (5): 662-676    DOI: 10.3785/j.issn.1008-9209.2023.09.191
Special Topic: Major Bacterial and Viral Diseases in Crops     
Uridine diphosphate-glucose 4-epimerase encoding gene galE affects the pathogenicity and carbon metabolism of Ralstonia pseudosolanacearum
Hong ZHANG1(),Zhijian LIN2,Jindong ZHU1,Zhaomiao LIN1,Guoliang LI1,Yongqing XU1,Zhonghua LIU1,Yongxiang QIU1,Sixin QIU1()
1.Crop Research Institute, Fujian Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in South China, Ministry of Agriculture and Rural Affairs/Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fuzhou 350013, Fujian, China
2.Sanming Academy of Agricultural Sciences, Sanming 365509, Fujian, China
Download: HTML   HTML (   PDF(6149KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to clarify the pathogenic function of uridine diphosphate (UDP)-glucose 4-epimerase encoding gene galE on Ralstonia pseudosolanacearum, the association between galE and the pathogenic-related phenotypes, and the gene deletion effect on physiological and biochemical metabolism of R. pseudosolanacearum were explored by constructing galE gene knock-out strain ΔgalE and its complementary strain CΔgalE. The results showed that the deletion of galE gene significantly decreased the pathogenicity of R. pseudosolanacearum on sweet potatoes and affected pathogenic-related phenotypes. The colony fluidity, swimming mobility, exopolysaccharide content and biofilm formation of ΔgalE reduced compared to those of wild-type SPRS911 and CΔgalE. In the galactose metabolism pathway, after deletion of galE gene, the expression levels of galU, pgm, and glk genes involved in the metabolism between uridine diphosphate glucose (UDPG) and glucose decreased, and D-glucose 6-phosphate accumulated. The expression levels of UDP-galactose (UDP-Gal) metabolism related genes dgoK, dgoAa, dgoAb, malZ and galM increased. The deletion of galE gene also enhanced the assimilation of malic acid in R. pseudosolanacearum. These results indicate that the galE gene has significant effects on the pathogenicity and the carbon metabolism of R. pseudosolanacearum.



Key wordsRalstonia pseudosolanacearum      sweet potato blast      uridine diphosphate-glucose 4-epimerase      exopolysaccharide      galactose metabolism      carbon metabolism     
Received: 19 September 2023      Published: 03 November 2023
CLC:  S432.1  
Corresponding Authors: Sixin QIU     E-mail: teeteeking@163.com;25273531@qq.com
Cite this article:

Hong ZHANG,Zhijian LIN,Jindong ZHU,Zhaomiao LIN,Guoliang LI,Yongqing XU,Zhonghua LIU,Yongxiang QIU,Sixin QIU. Uridine diphosphate-glucose 4-epimerase encoding gene galE affects the pathogenicity and carbon metabolism of Ralstonia pseudosolanacearum. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 662-676.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.09.191     OR     https://www.zjujournals.com/agr/Y2023/V49/I5/662


尿苷二磷酸-葡萄糖4-差向异构酶编码基因galE影响甘薯青枯菌致病性和碳代谢

为明确尿苷二磷酸(uridine diphosphate, UDP)-葡萄糖4-差向异构酶编码基因galE的功能,通过构建甘薯青枯菌galE基因敲除菌株ΔgalE及回补菌株CΔgalE,探索galE基因与甘薯青枯菌致病相关表型间的关联及对甘薯青枯菌生理代谢的影响。结果表明:galE基因缺失显著降低了青枯菌对甘薯的致病性,并且影响了致病相关表型。ΔgalE菌落流动性、菌体泳动能力、胞外多糖含量和生物膜形成量均明显低于野生型SPRS911和CΔgalE。在半乳糖代谢途径中,galE基因缺失后,参与尿苷二磷酸葡糖与葡萄糖之间代谢的galUpgmglk基因表达量降低,D-葡萄糖-6-磷酸累积;与UDP-半乳糖代谢有关的dgoKdgoAadgoAbmalZgalM基因表达量升高。galE基因缺失还加强了甘薯青枯菌对于苹果酸的同化作用。上述研究结果说明,galE基因对青枯菌的致病性与碳代谢水平均有明显影响。


关键词: 甘薯青枯菌,  甘薯瘟病,  尿苷二磷酸-葡萄糖4-差向异构酶,  胞外多糖,  半乳糖代谢,  碳代谢 
菌株 Strain特征 Feature来源 Resource
SPRS911

甘薯青枯菌野生型菌株,分离自甘薯病样,含多黏菌素B抗性

(polymyxin B resistance, PBr

本实验室分离
ΔgalESPRS911的galE基因敲除菌株本研究
galEΔgalE的回补菌株,含庆大霉素抗性(gentamicin resistance, Gm?)本研究
DH5α大肠埃希菌(Escherichia coli)菌株本研究
MT616

大肠埃希菌辅助菌株,含氯霉素抗性(chloramphenicol resistance,

Cmr

福建农林大学植物保护学院
质粒 Plasmid特征 Feature来源 Resource
pK18mobSacB

基因敲除用自杀载体,内含蔗糖敏感基因sacB,含卡那霉素抗性

(kanamycin resistance, Kmr

福建省农业科学院农业生物资源研究所
pK18-galEgalE基因敲除载体本研究
pBBR1MCS-5基因回补用广谱载体,含Gmr福建省农业科学院农业生物资源研究所
pBBR-galEgalE基因回补载体,含Gmr本研究
Table 1 Strains and plasmids used in this study
培养基 Medium1 L培养基配方 Medium formula per liter用途 Purpose

CPG固体

Solid CPG

10 g葡萄糖、10 g蛋白胨、1 g酸水解酪蛋白、15 g琼脂,pH 7.2青枯菌培养(28 ℃)

CPG-TTC固体

Solid CPG-TTC

CPG培养基灭菌后冷凝前,加入体积分数1% TTC母液青枯菌显色培养

TTC母液

TTC mother liquor

用无菌水配制质量浓度0.5% TTC,过滤灭菌,常温避光保存青枯菌显色
SP0.5 g磷酸二氢钾、0.25 g七水硫酸镁、10 g蔗糖、5 g蛋白胨,pH 7.4胞外多糖含量检测
NB6 g牛肉浸膏、2 g酵母提取物、5 g多聚蛋白胨、10 g蔗糖、3 g氯化钠,pH 7.0~7.2青枯菌生物膜形成量检测
LB10 g氯化钠、10 g胰蛋白胨、5 g酵母提取物,pH 7.0~7.2大肠埃希菌培养(37 ℃)

纤维素

Cellulose

10 g胰蛋白胨、5 g酵母膏、0.1 g台酚蓝、10 g氯化钠、5 g羧甲基纤维素钠、琼脂15 g,pH 7.2青枯菌纤维素酶活性测定

淀粉

Starch

2 g牛肉浸膏、17.5 g胰蛋白胨、1.5 g淀粉、17 g琼脂,pH 7.2青枯菌淀粉酶活性测定

果胶

Pectin

依次溶解12 g二水氯化钙、1 g蛋白胨、5 g柠檬酸钠、2 g硝酸钠、聚果胶酸钠盐溶液(10 g聚果胶酸钠盐、2 mL 5 mol/L氢氧化钠溶液提前溶于800 mL蒸馏水)、4 g琼脂,持续搅拌并加热至80~90 ℃至完全溶解,于115 ℃下灭菌10 min,灭菌后立即加入过滤灭菌的2 mL 1%结晶紫溶液混匀并制板青枯菌果胶酶活性测定
Table 2 Media used in this study
引物名称 Primer name

引物序列(5→3

Primer sequence (5→3)

用途

Purpose

galE-UP

F: TATGACATGATTACGAATTCGAAGCCCAGCAGCAGGCA (EcoRⅠ)

R: TACCCTTCACCCGATGCAGACCCGGGGCTGATC

扩增galE基因上游重组臂
galE-DO

F: TCAGCCCCGGGTCTGCATCGGGTGAAGGGTTCGA

R: TCGACGGCCAGTGCCAAGCTTCAATGCCAGTGCCTTCAAGCT (HindⅢ)

扩增galE基因下游重组臂
BRgalE

F: CCCAAGCTTATGAACGAAACCATCCTGCTGACC (HindⅢ)

R: TGGACTAGTCAGCCCCGGGTCTGAAAG (SpeⅠ)

扩增galE基因全长序列
qgalE

F: TTACCGTTAACCTCGGCACC

R: TCGCGACGATCTCATAGGGG

实时荧光定量PCR(real-time fluorescence quantita-tive PCR, qRT-PCR)扩增
qdgoK

F: GAGAACCTCGGACTGCACAA

R: TCAGGCTCGGTGATGGACAG

qdgoAa

F: TCGAGATCCCGCTCAACTCGC

R: TCCGCAGCCAACTGGTCAACG

qdgoAb

F: TCAACGGCTGTGAGGAGATG

R: TATGAACAGCGGGTGGTACG

qmalZ

F: CCTTGCTCGACTACGGCATC

R: TCGCATCATCAGCTGGGTCT

qgalM

F: GCTCACACATCGTCCTGCT

R: TCATGCTTGATGGCGAACGTC

qlacC

F: CTACTGGGCACCGTACTATCG

R: TCTGAGCATCGAGGTTGACCA

qpgm

F: GTACATCGACCGCATCGTCT

R: TGTGGTGGTTCGGAAAATGGC

qglk

F: CTGTCCGATTTCAAGCTGCG

R: TAAGGCGAGGGCGTCGAT

qgalU

F: CGACTTCGAGGCGTATCTGT

R: TCCAGCGGCAACACTTTCTTG

qgyrA

F: CGACTGGAACCGTCCCTAC

R: TCCGCACGATGGTGTCATA

Table 3 Primers used in this study
Fig. 1 Structures of GALE protein andUDP-glucose 4-epimeraseA. Predicted structure of GALE protein in R. pseudosolanacearum; B. Alignment of amino acid sequences; C. Structure of UDP-glucose 4-epimerase of B. pseudomallei.
Fig. 2 Phylogenetic tree based on GALE amino acid sequences
Fig. 3 Verification of the galE gene knock-outand complementary strainsA. PCR amplification of the knock-out strain ΔgalE; B. PCR amplification of the complementary strain CΔgalE; C. qRT-PCR detection of the transcriptional levels of galE gene in SPRS911, ΔgalE andgalE. M: DL2000 DNA marker. Double asterisks (**) and triple asterisks (***) indicate highly and extremely highly significant differences at the 0.01 and 0.001 probability levels, respectively (the same as below), and n=3.
Fig. 4 Colony morphologies of SPRS911, ΔgalE and CΔgalE strains on CPG-TTC plates
Fig. 5 Growth curves of SPRS911, ΔgalE and CΔgalE strains in CPG liquid media
Fig. 6 Pathogenicity of SPRS911, ΔgalE and CΔgalE strains on sweet potato leavesA. Diagram of the disease grade division; B. Disease symptoms on sweet potato leaves after 6 days post inoculation; C. Disease index on sweet potato leaves after 6 days post inoculation (n=4).
Fig. 7 Swimming mobility of SPRS911, ΔgalE and CΔgalE strainsA. Colony morphology after cultured for 36 h; B. Colony diameter change within 72 h of culture.
Fig. 8 EPS contents of SPRS911, ΔgalE and CΔgalE strainsQuadruple asterisks (****) indicate extremely highly significant differences at the 0.000 1 probability level (the same as below), and n=5.
Fig. 9 Biofilm formation in SPRS911, ΔgalE and CΔgalE strainsSingle asterisk (*) indicates significant differences at the 0.05 probability level (the same as below), and n=4.
Fig. 10 Galactose metabolism related gene expression levels of SPRS911, ΔgalE and CΔgalE strains after inoculating sweet potatoes
Fig. 11 galE gene involved galactose metabolism pathway of R. pseudosolanacearumRed letter indicates the gene expression trend as galE; green letter indicates the gene expression trend opposite to galE; gray dotted arrow indicates the intermediate process is not clear.
Fig. 12 D-glucose 6-phosphate contents of SPRS911, ΔgalE and CΔgalE strains

生理生化反应

Physiological and

biochemical reaction

菌株 Strain

生理生化反应

Physiological and

biochemical reaction

菌株 Strain
SPRS911ΔgalEgalESPRS911ΔgalEgalE

硝酸盐还原

Reduction of nitrates

N-乙酰基葡糖胺同化

Assimilation of N-acetyl-glucosamine

吲哚产生

Production of indole

D-麦芽糖同化

Assimilation of D-maltose

葡萄糖发酵

Fermentation of glucose

葡萄糖酸钾同化

Assimilation of potassium gluconate

精氨酸双水解酶活性

Arginine dihydrolase activity

羊蜡酸同化

Assimilation of capric acid

脲酶活性

Urease activity

己二酸同化

Assimilation of adipic acid

七叶苷水解

Hydrolysis of esculin

苹果酸同化

Assimilation of malic acid

明胶水解

Hydrolysis of gelatin

枸橼酸钠同化

Assimilation of trisodium citrate

β-半乳糖苷酶活性

β-galactosidase activity

苯乙酸同化

Assimilation of phenylacetic acid

葡萄糖同化

Assimilation of glucose

细胞色素氧化酶活性

Cytochrome oxidase activity

阿拉伯糖同化

Assimilation of arabinose

纤维素酶活性

Cellulase activity

甘露糖同化

Assimilation of mannose

果胶酶活性

Pectinase activity

甘露醇同化

Assimilation of mannitol

淀粉酶活性

Amylase activity

Table 4 Physiological and biochemical characteristics of SPRS911, ΔgalE and CΔgalE strains
[7]   刘中华,余华,方树民,等.甘薯瘟田间自然诱发鉴定及系统聚类分析[J].江西农业大学学报,2014,36(5):1066-1073. DOI:10.13836/j.jjau.2014170
LIU Z H, YU H, FANG S M, et al. The resistance evaluation of natural Ralstonia solanacearum nursery of sweetpotato varieties and cluster analysis[J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(5): 1066-1073. (in Chinese with English abstract)
doi: 10.13836/j.jjau.2014170
[8]   张鸿,刘中华,林志坚,等.福建甘薯薯瘟病菌致病型分布和甘薯抗病品种筛选[J].江苏师范大学学报(自然科学版),2017,35(4):15-20. DOI:10.3969/j.issn.2095-4298.2017.04.004
ZHANG H, LIU Z H, LIN Z J, et al. Distribution of different pathotypes of sweetpotato Ralstonia solanacearum and selection of disease resistant sweetpotato varieties in Fujian Province[J]. Journal of Jiangsu Normal University (Natural Science Edition), 2017, 35(4): 15-20. (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-4298.2017.04.004
[9]   潘哲超.植物青枯菌遗传多样性及致病力分化研究[D].北京:中国农业科学院,2010.
PAN Z C. Genetic diversity and pathogenicity variation of Ralstonia solanacearum [D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese with English abstract)
[10]   卢同,种藏文,王长方,等.甘薯青枯菌的生理小种研究[J].福建省农科院学报,1996,11(1):36-40.
LU T, ZHONG Z W, WANG C F, et al. A study on physiological races of Pseudomonas solanacearum in sweet potatoes[J]. Journal of Fujian Academy of Agricultural Sciences, 1996, 11(1): 36-40. (in Chinese with English abstract)
[11]   卢同,种藏文,王长方,等.甘薯青枯菌的生化型研究[J].福建省农科院学报,1990,5(1):40-44.
LU T, ZHONG Z W, WANG C F, et al. Studies on biotypes in isolates of Pseudomonas solanacearum from sweet potatoes[J]. Journal of Fujian Academy of Agricultural Sciences, 1990, 5(1): 40-44. (in Chinese with English abstract)
[12]   JYOTI P, SHREE M, JOSHI C, et al. The Entner-Doudoroff and nonoxidative pentose phosphate pathways bypass glycolysis and the oxidative pentose phosphate pathway in Ralstonia solanacearum [J]. mSystems, 2020, 5(2): e00091-20. DOI: 10.1128/mSystems.00091-20
doi: 10.1128/mSystems.00091-20
[13]   KRISPIN O, ALLMANSBERGER R. The Bacillus subtilis galE gene is essential in the presence of glucose and galactose[J]. Journal of Bacteriology, 1998, 180(8): 2265-2270. DOI: 10.1128/JB.180.8.2265-2270.1998
doi: 10.1128/JB.180.8.2265-2270.1998
[1]   PRIOR P, AILLOUD F, DALSING B L, et al. Genomic and proteomic evidence supporting the division of the plant pathogen Ralstonia solanacearum into three species[J]. BMC Genomics, 2016, 17: 90. DOI: 10.1186/s12864-016-2413-z
doi: 10.1186/s12864-016-2413-z
[2]   WICKER E, GRASSART L, CORANSON-BEAUDU R, et al. Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential[J]. Applied and Environmental Microbiology, 2007, 73(21): 6790-6801. DOI: 10.1128/AEM.00841-07
doi: 10.1128/AEM.00841-07
[14]   CHAI Y R, BEAUREGARD P B, VLAMAKIS H, et al. Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis [J]. eBio, 2012, 3(4): e00184-12. DOI: 10.1128/mbio. 00184-12
doi: 10.1128/mbio. 00184-12
[15]   SHUSTER C W, RUNDELL K. Resistance of Salmonella typhimurium mutants to galactose death[J]. Journal of Bac-teriology, 1969, 100(1): 103-109.
[3]   SAFNI I, CLEENWERCK I, DE VOS P, et al. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype Ⅳ strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotypeⅠand Ⅲ strains as Ralstonia pseudosolanacearum sp. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(9): 3087-3103. DOI: 10.1099/ijs.0.066712-0
doi: 10.1099/ijs.0.066712-0
[4]   FEGAN M, PRIOR P. How complex is the “Ralstonia solanacearum species complex”[M]//ALLEN C, PRIOR P, HAYWARD A C. Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex. Saint Paul, MN: APS Press, 2005: 449-461.
[16]   FRY B N, FENG S, CHEN Y Y, et al. The galE gene of Campylobacter jejuni is involved in lipopolysaccharide synthesis and virulence[J]. Infection and Immunity, 2000, 68(5): 2594-2601. DOI: 10.1128/IAI.68.5.2594-2601.2000
doi: 10.1128/IAI.68.5.2594-2601.2000
[17]   ROBERTSON B D, FROSCH M, VAN PUTTEN J P M. The role of galE in the biosynthesis and function of gonococcal lipopolysaccharide[J]. Molecular Microbiology, 1993, 8(5): 891-901. DOI: 10.1111/j.1365-2958.1993.tb01635.x
doi: 10.1111/j.1365-2958.1993.tb01635.x
[5]   LOWE-POWER T, AVALOS J, BAI Y L, et al. A meta-analysis of the known global distribution and host range of the Ralstonia species complex[J]. bioRxiv, 2020, 7: 189936. DOI: 10.1101/2020.07.13.189936
doi: 10.1101/2020.07.13.189936
[6]   蔡刘体,汪汉成,刘艳霞,等.青枯菌种内分型研究进展[J].生物技术通报,2013(7):20-23. DOI:10.13560/j.cnki.biotech.bull.1985.2013.07.001
doi: 10.13560/j.cnki.biotech.bull.1985.2013.07.001
[18]   NAKAO R, SENPUKU H, WATANABE H. Porphyromonas gingivalis galE is involved in lipopolysaccharide O-antigen synthesis and biofilm formation[J]. Infection and Immunity, 2006, 74(11): 6145-6153. DOI: 10.1128/IAI.00261-06
doi: 10.1128/IAI.00261-06
[19]   NIOU Y K, WU W L, LIN L C, et al. Role of galE on biofilm formation by Thermus spp.[J]. Biochemical and Bio-physical Research Communications, 2009, 390(2): 313-318. DOI: 10.1016/j.bbrc.2009.09.120
doi: 10.1016/j.bbrc.2009.09.120
[6]   CAI L T, WANG H C, LIU Y X, et al. Advance of the classification in Ralstonia solanacearum species[J]. Biote-chnology Bulletin, 2013(7): 20-23. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2013.07.001
[20]   LI C T, LIAO C T, DU S C, et al. Functional charac-terization and transcriptional analysis of galE gene encoding a UDP-galactose 4-epimerase in Xanthomonas campestris pv. campestris [J]. Microbiological Research, 2014, 169(5/6): 441-452. DOI: 10.1016/j.micres.2013.08.005
doi: 10.1016/j.micres.2013.08.005
[21]   陈书冰,许孜书,黄倩,等.甘蓝型油菜肌醇加氧酶基因家族鉴定与表达分析[J].浙江大学学报(农业与生命科学版),2023,49(4):484-496. DOI:10.3785/j.issn.1008-9209.2022.09.281
CHEN S B, XU Z S, HUANG Q, et al. Identification and expression analysis of myo-inositol oxygenase gene family in Brassica napus L.[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2023, 49(4): 484-496. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2022.09.281
[22]   FAN X J, ZHAO Z W, SUN T Y, et al. The LysR-type trans-criptional regulator CrgA negatively regulates the flagellar master regulator flhDC in Ralstonia solanacearum GMI1000[J]. Journal of Bacteriology, 2020, 203(1): e00419-20. DOI: 10.1128/JB.00419-20
doi: 10.1128/JB.00419-20
[23]   张鸿,林志坚,林赵淼,等.水培法鉴定甘薯抗甘薯瘟病技术的构建[J].江苏师范大学学报(自然科学版),2022,40(3):22-26. DOI:10.3969/j.issn.2095-4298.2022.03.005
ZHANG H, LIN Z J, LIN Z M, et al. Construction of identification of sweetpotato resistance to Ralstonia solanacearum by hydroponics[J]. Journal of Jiangsu Normal University (Natural Science Edition), 2022, 40(3): 22-26. (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-4298.2022.03.005
[24]   陈小强,陈德局,朱育菁,等.青枯雷尔氏菌胞外多糖合成缺失突变株构建及其生物学特性[J].微生物学报,2018,58(5):926-938. DOI:10.13343/j.cnki.wsxb.20170590
CHEN X Q, CHEN D J, ZHU Y J, et al. Construction and characterization of extracellular polysaccharide deletion mutant of Ralstonia solanacearum [J]. Acta Microbiologica Sinica, 2018, 58(5): 926-938. (in Chinese with English abstract)
doi: 10.13343/j.cnki.wsxb.20170590
[25]   梁欢.植物青枯菌spoTrelA基因功能研究[D].北京:中国农业科学院,2020.
LIANG H. Research on function of spoT and relA genes in Ralstonia solanacearum [D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese with English abstract)
[26]   PATRA T, KOLEY H, RAMAMURTHY T, et al. The Entner-Doudoroff pathway is obligatory for gluconate utilization and contributes to the pathogenicity of Vibrio cholerae [J]. Journal of Bacteriology, 2012, 194(13): 3377-3385. DOI: 10.1128/JB.06379-11
doi: 10.1128/JB.06379-11
[27]   GENIN S, DENNY T P. Pathogenomics of the Ralstonia solanacearum species complex[J]. Annual Review of Phytopa-thology, 2012, 50: 67-89. DOI: 10.1146/annurev-phyto-081211-173000
doi: 10.1146/annurev-phyto-081211-173000
[28]   D’HAEZE W, HOLSTERS M. Surface polysaccharides enable bacteria to evade plant immunity[J]. Trends in Micro-biology, 2004, 12(12): 555-561. DOI: 10.1016/j.tim.2004.10.009
doi: 10.1016/j.tim.2004.10.009
[29]   陈德局,张海峰,刘波,等.青枯雷尔氏菌胞外多糖研究进展[J].福建农业科技,2017(11):45-48. DOI:10.13651/j.cnki.fjnykj.2017.11.017
CHEN D J, ZHANG H F, LIU B, et al. Research process in exopolysaccharide of Ralstonia solanacearum [J]. Fujian Agricultural Science and Technology, 2017(11): 45-48. (in Chinese with English abstract)
doi: 10.13651/j.cnki.fjnykj.2017.11.017
[30]   YANG L, WEI Z L, LI S L, et al. Plant secondary metabolite, daphnetin reduces extracellular polysaccharides production and virulence factors of Ralstonia solanacearum [J]. Pesticide Biochemistry and Physiology, 2021, 179: 104948. DOI: 10.1016/j.pestbp.2021.104948
doi: 10.1016/j.pestbp.2021.104948
[31]   周偲健.番茄青枯病菌(Ralstonia solanacearum)致病相关基因epsC的克隆及功能分析[D].广东,广州:华南农业大学,2019.
ZHOU C J. Cloning and functional analysis of the pathogenic-related gene epsC of Ralstonia solanacearum [D]. Guangzhou, Guangdong: South China Agricultural University, 2019. (in Chinese with English abstract)
[32]   袁婷,李金豪,刘吉平.茄科劳尔氏菌复合体毒力基因及调控网络最新研究进展[J].微生物学通报,2023,50(5):2227-2248. DOI:10.13344/j.microbiol.china.220742
YUAN T, LI J H, LIU J P. Latest research progress in virulence genes and regulatory networks of Ralstonia sola-nacearum species complex[J]. Microbiology China, 2023, 50(5): 2227-2248. (in Chinese with English abstract)
doi: 10.13344/j.microbiol.china.220742
[33]   LIU A, MI Z H, ZHENG X Y, et al. Exopolysaccharides play a role in the swarming of the benthic bacterium Pseudoal-teromonas sp. SM9913[J]. Frontiers in Microbiology, 2016, 7: 473. DOI: 10.3389/fmicb.2016.00473
doi: 10.3389/fmicb.2016.00473
[34]   ORGAMBIDE G, MONTROZIER H, SERVIN P, et al. High heterogeneity of the exopolysaccharides of Pseudomonas solanacearum strain GMI 1000 and the complete structure of the major polysaccharide[J]. Journal of Biological Chemistry, 1991, 266(13): 8312-8321.
[35]   ARAUD-RAZOU I, VASSE J, MONTROZIER H, et al. Detection and visualization of the major acidic exopoly-saccharide of Ralstonia solanacearum and its role in tomato root infection and vascular colonization[J]. European Journal of Plant Pathology, 1998, 104(8): 795-809.
[36]   McGARVEY J A, DENNY T P, SCHELL M A. Spatial-temporal and quantitative analysis of growth and EPSⅠ production by Ralstonia solanacearum in resistant and susceptible tomato cultivars[J]. Phytopathology, 1999, 89(12): 1233-1239. DOI: 10.1094/PHYTO.1999.89.12.1233
doi: 10.1094/PHYTO.1999.89.12.1233
[37]   王正荣,生吉萍,申琳.细菌胞外多糖的生物合成与基因控制[J].生物技术通报,2010(11):48-55. DOI:10.13560/j.cnki.biotech.bull.1985.2010.11.007
WANG Z R, SHENG J P, SHEN L. Biosynthesis of bacterial exopolysaccharides and gene cluster[J]. Biotechnology Bulletin, 2010(11): 48-55. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2010.11.007
[38]   PEYRAUD R, COTTRET L, MARMIESSE L, et al. A resource allocation trade-off between virulence and proliferation drives metabolic versatility in the plant pathogen Ralstonia solanacearum [J]. PLoS Pathogens, 2016, 12(10): e1005939. DOI: 10.1371/journal.ppat.1005939
doi: 10.1371/journal.ppat.1005939
[1] MA Xiaokui1*, JIANG Hua1, LI Junzhi2, CHEN Yong3,HE Xiaojing1.
Optimization of medium components for the production of exopolysaccharide by Lycoperdon pyriforme Schaeff.: Pers. using response surface methodology
[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(5): 481-488.
[2] DAI Xian-jun,ZHANG Wei,LIU Ming-qi,HUANG Xiao-lin. Isolation,identification and biological characteristics of an exopolysaccharideproducing lactic acid bacteria strain from intestinal tract of black porgy (Sparus macrocephalus)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(2): 149-154.
[3] YE Ming,CHEN Wu-xi,PENG Wei,MA Jian,YANG Liu. Effects of batch and fed-batch cultures on biomass and exopolysaccharide production of Lachnum calyculiforme[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2010, 36(6): 630-634.