Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (3): 393-402    DOI: 10.3785/j.issn.1008-9209.2021.05.173
Agricultural engineering     
Recognition of field-grown tobacco plant type characteristics based on three-dimensional point cloud and ensemble learning
Aobo JIA1(),Tianhao DONG1,Yan ZHANG2,Binglin ZHU1,Yanguo SUN2,Yuanhua WU2,Yi SHI2,Yuntao MA1,Yan GUO1()
1.College of Land Science and Technology, China Agricultural University, Beijing 100193, China
2.Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong, China
Download: HTML   HTML (   PDF(2228KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To develop an efficient method for quantifying tobacco plant types in the field, the three-dimensional (3D) point clouds of individual plant of five tobacco cultivars were reconstructed based on multi-view image sequences using the structure from motion method. According to the plant type characteristic indexes commonly used, ten phenotypic parameters such as plant height, top width, bottom width, and maximum width of leaf layer were automatically extracted based on the 3D point cloud of tobacco plant, and the calculation accuracy was evaluated based on the plant height and maximum width of leaf layer measured manually in situ in the field. The results indicated the coefficients of determination (R2) of the plant height and maximum width of leaf layer extracted from the 3D point cloud were all greater than 0.97, and the root mean square errors were 3.0, 3.1 cm, respectively. Meanwhile, the extracted phenotypic parameters of tobacco plants were analyzed by different methods. The results of intergroup correlation analysis showed that 16 pairs of traits were extremely significant positive correlations, while one pair of traits was extremely significant negative correlation. The results of one-way multivariate analysis of variance showed that there were highly significant differences among the plant types. The first three principal components were extracted by principal component analysis, and their cumulative contribution rate to the overall variance was 81.6%. The accuracy of plant type discrimination was 93.7% using Stacking ensemble learning method, which was significantly higher than those using random forest, support vector machine and naive Bayesian. This study can provide a method basis for phenotypic characteristics and plant type recognition of field-grown tobacco plants.



Key wordsthree-dimensional point cloud      tobacco      phenotype      machine learning      plant type     
Received: 17 May 2021      Published: 07 July 2022
CLC:  TP 391.7  
Corresponding Authors: Yan GUO     E-mail: aobo.jia@cau.edu.cn;yan.guo@cau.edu.cn
Cite this article:

Aobo JIA,Tianhao DONG,Yan ZHANG,Binglin ZHU,Yanguo SUN,Yuanhua WU,Yi SHI,Yuntao MA,Yan GUO. Recognition of field-grown tobacco plant type characteristics based on three-dimensional point cloud and ensemble learning. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 393-402.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.05.173     OR     https://www.zjujournals.com/agr/Y2022/V48/I3/393


基于三维点云和集成学习的大田烟草株型特征识别

为构建高效的大田烟草株型定量化方法,本研究基于多视角图像序列并采用运动恢复结构算法重建了5个品种烟草植株的三维点云。根据常用的烟草株型特征指标,基于烟株三维点云自动提取株高、顶宽、底宽、叶层最大宽等10个表型参数,并基于大田原位手动测量的株高和叶层最大宽对计算精度进行评估。结果表明,基于三维点云提取的株高和叶层最大宽与实测值的决定系数(R2)均大于0.97,均方根误差分别为3.0、3.1 cm。同时,采用不同方法对提取的烟草表型性状进行分析。组间相关性分析结果表明,有16对性状呈极显著正相关,1对性状呈极显著负相关。单因素多元方差分析结果表明,各品种株型之间具有极显著差异。利用主成分分析提取前3个主成分,其对总体方差的累计贡献率为81.6%。基于Stacking集成学习方法进行株型判别,其准确率达到93.7%,显著高于随机森林、支持向量机和朴素贝叶斯等3种机器学习模型的准确率。本研究可为大田烟草表型特征及株型识别提供方法依据。


关键词: 三维点云,  烟草,  表型,  机器学习,  株型 
Fig. 1 Tobacco point cloud reconstruction and pre-processing based on image sequences

表型参数

Phenotypic parameter

符号

Symbol

定义

Definition

株高 Plant height/cmH植株最高点到基部的距离
顶宽 Top width/cmWT最上部有效叶片叶尖至茎的垂直距离的2倍
底宽 Bottom width/cmWB最下部有效叶片叶尖至茎的垂直距离的2倍

叶层最大宽

Maximum width of leaf layer/cm

Wmax叶片叶尖距茎秆垂直距离最大值的2倍

叶层最大宽在叶层高的位置

Maximum width of leaf layer at

the height of the leaf layer/cm

HM叶层最大宽处端点到植株基部的垂直距离

最小包围盒体积

Minimum enclosing box volume/m3

VB包围点云的最小立方体的体积
凸包体积Convex hull volume/m3VC包含点云的最小凸多面体的体积
冠层投影包围盒面积Canopy projected enclosing box area/m2S冠层在X-Y平面上投影的最小矩形框面积

投影后凸包的面积

Area of convex hull after projection/m2

SC冠层在X-Y平面上投影后凸包的面积
茎叶夹角Stem and leaf angle/(°)α植株腰部叶片拟合平面与茎秆的夹角
Table 1 Extracted phenotypic parameters of tobacco
Fig. 2 Schematic diagram of each phenotypic parameter extraction of tobaccoA. Front view of tobacco plant; B. Minimum enclosing box volume and convex hull volume; C. Top view of tobacco plant; D. Stem and leaf angle. Please see the Table 1 for the details of each phenotypic parameter, and the same as below.
Fig. 3 Ensemble learning method based on Stacking
Fig. 4 Canopy point cloud of five tobacco cultivars based on multi-view image sequence reconstructionHH: Honghuadajinyuan; XK: New K326; LY: Liaoyan No. 1;QG: Qinggeng; EMS: EMS mutant. The same as below.
Fig. 5 Comparisons of plant height and maximum width of leaf layer calculated based on reconstructed point cloud of tobacco canopy with the measured valuesn: Number of samples.
Fig. 6 Correlation analysis of phenotypic parametersSingle asterisk (*) and double asterisks (**) mean significant and extremely significant correlations at the 0.05 and 0.01 probability levels, respectively.
Fig. 7 Contribution rates of tobacco phenotypes to each principal component
Fig. 8 Comparisons of differences among phenotypes of tobacco cultivarsDifferent lowercase letters above bars indicate significant differences at the 0.05 probability level.

模型

Model

准确率

Accuracy/%

Kappa系数

Kappa coefficient

随机森林

Random forest

80.20.74

支持向量机

Support vector machine

80.90.75

朴素贝叶斯

Naive Bayesian

83.30.78

Stacking集成学习

Stacking ensemble learning

93.70.91
Table 2 Comparisons of plant type discrimination accuracy and evaluation indexes of different models
[1]   DONALD C M. The breeding of crop ideotypes[J]. Euphytica, 1968, 17(3): 385-403. DOI:10.1007/bf00056241
doi: 10.1007/bf00056241
[2]   袁隆平.超级杂交水稻育种研究的进展[J].中国稻米,2008(1):1-3.
YUAN L P. Study development on breeding of super hybrid rice[J]. China Rice, 2008(1): 1-3. (in Chinese)
[3]   王丰,丁伟,冯勇刚,等.烤烟优质适产理想株型探讨[J].种子,2007,26(5):84-87.
WANG F, DING W, FENG Y G, et al. Study on tobacco ideotype for high quality and adequate production[J]. Seed, 2007, 26(5): 84-87. (in Chinese)
[4]   顾会战,母明新,史洪涛,等.关于烤烟“中棵烟”培育的若干思考[J].中国烟草学报,2020,26(6):89-96. DOI:10.16472/j.chinatobacco.2020.T0015
GU H Z, MU M X, SHI H T, et al. Some thoughts on 'Zhongkeyan'‍ cultivation of flue-cured tobacco[J]. Acta Tabacaria Sinica, 2020, 26(6): 89-96. (in Chinese with English abstract)
doi: 10.16472/j.chinatobacco.2020.T0015
[5]   赵春江.植物表型组学大数据及其研究进展[J].农业大数据学报,2019,1(2):5-18. DOI:10.19788/j.issn.2096-6369.190201
ZHAO C J. Big data of plant phenomics and its research progress[J]. Journal of Agricultural Big Data, 2019, 1(2): 5-18. (in Chinese with English abstract)
doi: 10.19788/j.issn.2096-6369.190201
[6]   郭焱,史同鑫,吴劼,等.烟草植株静态虚拟模型的研究[J].中国烟草学报,2012,18(5):29-33. DOI:10.3969/j.issn.1004-5708.2012.05.005
GUO Y, SHI T X, WU J, et al. Development of static virtual tobacco model based on three-dimensional scanning methodology[J]. Acta Tabacaria Sinica, 2012, 18(5): 29-33. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-5708.2012.05.005
[7]   王芸芸,温维亮,郭新宇,等.烟草地上部植株三维重构与可视化[J].中国农业科学,2013,46(1):37-44. DOI:10.3864/j.issn.0578-1752.2013.01.005
WANG Y Y, WEN W L, GUO X Y, et al. Research on three-dimensional reconstruction and visualization of above ground tobacco plant[J]. Scientia Agricultura Sinica, 2013, 46(1): 37-44. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2013.01.005
[8]   DUAN T, CHAPMAN S C, HOLLAND E, et al. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes[J]. Journal of Experimental Botany, 2016, 67(15): 4523-4534. DOI:10.1093/jxb/erw227
doi: 10.1093/jxb/erw227
[9]   HUI F, ZHU J, HU P, et al. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations[J]. Annals of Botany, 2018, 121(5): 1079-1088. DOI:10.1093/aob/mcy016
doi: 10.1093/aob/mcy016
[10]   朱冰琳,刘扶桑,朱晋宇,等.基于机器视觉的大田植株生长动态三维定量化研究[J].农业机械学报,2018,49(5):256-262. DOI:10.6041/j.issn.1000-1298.2018.05.030
ZHU B L, LIU F S, ZHU J Y, et al. Three-dimensional quantifications of plant growth dynamics in field-grown plants based on machine vision method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 256-262. (in Chinese with English abstract)
doi: 10.6041/j.issn.1000-1298.2018.05.030
[11]   HOU T Y, ZHENG B Y, XU Z L, et al. Simplification of leaf surfaces from scanned data: effects of two algorithms on leaf morphology[J]. Computers and Electronics in Agriculture, 2016, 121: 393-403. DOI:10.1016/j.compag.2016.01.010
doi: 10.1016/j.compag.2016.01.010
[12]   MOHANTY S P, HUGHES D P, SALATHÉ M. Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science, 2016, 7: 1419. DOI:10.3389/fpls.2016.01419
doi: 10.3389/fpls.2016.01419
[13]   KUSSUL N, LAVRENIUK M, SKAKUN S, et al. Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 778-782. DOI:10.1109/LGRS.2017.2681128
doi: 10.1109/LGRS.2017.2681128
[14]   CHLINGARYAN A, SUKKARIEH S, WHELAN B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review[J]. Computers and Electronics in Agriculture, 2018, 151: 61-69. DOI:10.1016/j.compag.2018.05.012
doi: 10.1016/j.compag.2018.05.012
[15]   CHEN T, AOIKE T, YAMASAKI M, et al. Predicting rice heading date using an integrated approach combining a machine learning method and a crop growth model[J]. Frontiers in Genetics, 2020, 11: 599510. DOI:10.3389/fgene. 2020.599510
doi: 10.3389/fgene. 2020.599510
[16]   LI B, ZHANG N, WANG Y G, et al. Genomic prediction of breeding values using a subset of SNPs identified by three machine learning methods[J]. Frontiers in Genetics, 2018, 9: 237. DOI:10.3389/fgene.2018.00237
doi: 10.3389/fgene.2018.00237
[17]   袁培森,杨承林,宋玉红,等.基于Stacking集成学习的水稻表型组学实体分类研究[J].农业机械学报,2019,50(11):144-152. DOI:10.6041/j.issn.1000-1298.2019.11.016
YUAN P S, YANG C L, SONG Y H, et al. Classification of rice phenomics entities based on Stacking ensemble learning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 144-152. (in Chinese with English abstract)
doi: 10.6041/j.issn.1000-1298.2019.11.016
[18]   WANG J, XU J, PENG Y, et al. Prediction of forest unit volume based on hybrid feature selection and ensemble learning[J]. Evolutionary Intelligence, 2020, 13(1): 21-32. DOI:10.1007/s12065-019-00219-4
doi: 10.1007/s12065-019-00219-4
[19]   鲁冬冬,邹进贵.三维激光点云的降噪算法对比研究[J].测绘通报,2019():102-105. DOI:10.13474/j.cnki.11-2246.2019.0599
LU D D, ZOU J G. Comparative research on denoising algorithms of 3D laser point cloud[J]. Bulletin of Surveying and Mapping, 2019(): 102-105. (in Chinese with English abstract)
doi: 10.13474/j.cnki.11-2246.2019.0599
[20]   FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395. DOI:10.1145/358669.358692
doi: 10.1145/358669.358692
[21]   XIAO S F, CHAI H H, SHAO K, et al. Image-mased dynamic quantification of aboveground structure of sugar beet in field[J]. Remote Sensing, 2020, 12(2): 269. DOI:10.3390/rs12020269
doi: 10.3390/rs12020269
[22]   薛小平,赵会纳,陈懿,等.贵州烟区烤烟K326株型特征研究[J].中国烟草科学,2013,34(1):34-39. DOI:10.3969/j.issn.1007-5119.2013.01.007
XUE X P, ZHAO H N, CHEN Y, et al. Studies on plant type characteristics of flue-cured tobacco K326 in Guizhou[J]. Chinese Tobacco Science, 2013, 34(1): 34-39. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-5119.2013.01.007
[23]   国家烟草专卖局. 烟草农艺性状调查测量方法: [S].北京:中国标准出版社,2010. DOI:10.1136/tc.2010.036079
State Tobacco Monopoly Administration. Investigating and Measuring Methods of Agronomical Character of Tobacco: [S]. Beijing: Standards Press of China, 2010. (in Chinese)
doi: 10.1136/tc.2010.036079
[24]   孔彦龙,高晓阳,李红玲,等.基于机器视觉的马铃薯质量和形状分选方法[J].农业工程学报,2012,28(17):143-148. DOI:10.3969/j.issn.1002-6819.2012.17.021
KONG Y L, GAO X Y, LI H L, et al. Potato grading method of mass and shapes based on machine vision[J]. Transactions of the CSAE, 2012, 28(17): 143-148. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2012.17.021
[25]   吴正敏,曹成茂,王二锐,等.基于形态特征参数的茶叶精选方法[J].农业工程学报,2019,35(11):315-321. DOI:10.11975/j.issn.1002-6819.2019.11.036
WU Z M, CAO C M, WANG E R, et al. Tea selection method based on morphology feature parameters[J]. Transactions of the CSAE, 2019, 35(11): 315-321. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2019.11.036
[26]   柴宏红,邵科,于超,等.基于三维点云的甜菜根表型参数提取与根型判别[J].农业工程学报,2020,36(10):181-188. DOI:10.11975/j.issn.1002-6819.2020.10.022
CHAI H H, SHAO K, YU C, et al. Extraction of phenotypic parameters and discrimination of beet root types based on 3D point cloud[J]. Transactions of the CSAE, 2020, 36(10): 181-188. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2020.10.022
[27]   孙统,漆建波,黄华国.手持式激光雷达观测玉兰物候期叶倾角变化[J].遥感信息,2020,35(5):113-118. DOI:10.3969/j.issn.1000-3177.2020.05.014
SUN T, QI J B, HUANG H G. Using handheld LiDAR to observe leaf inclination angels of Magnolia denudatain phenological period[J]. Remote Sensing Information, 2020, 35(5): 113-118. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-3177.2020.05.014
[28]   WOLD S, ESBENSEN K, GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1/2/3): 37-52. DOI:10.1016/0169-7439(87)80084-9
doi: 10.1016/0169-7439(87)80084-9
[29]   GRANATO D, SANTOS J S, ESCHER G B, et al. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: a critical perspective[J]. Trends in Food Science & Technology, 2018, 72: 83-90. DOI:10.1016/j.tifs.2017.12.006
doi: 10.1016/j.tifs.2017.12.006
[30]   QUAN W, WU Z L, JIAO Y, et al. Exploring the relationship between potato components and Maillard reaction derivative harmful products using multivariate statistical analysis[J]. Food Chemistry, 2021, 339: 127853. DOI:10.1016/j.foodchem. 2020.127853
doi: 10.1016/j.foodchem. 2020.127853
[31]   WOLPERT D H. Stacked generalization[J]. Neural Net- works, 1992, 5(2): 241-259. DOI:10.1016/s0893-6080(05)80023-1
doi: 10.1016/s0893-6080(05)80023-1
[1] Kaiyou ZHENG,Yun REN,Honglei LI,Jing LIU,Qiang LI. Effects of maize plant type and row width on photosynthetic characteristics and yield of ginger under maize/ginger intercropping mode[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 310-320.
[2] Yiping LIU,Fangfang WU,Dan HE,Yuan ZHUANG,Dezheng KONG. Numerical classification of lotus cultivars based on flower color phenotype[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 319-326.
[3] Yan ZHAO,Junjie JIN,Minmin REN,Fengxiang HOU,Suzhen LIU,Chengjun XUE,Yingping XIAO. Virulence genes and drug resistance characteristics of Escherichia coli in laying duck under the two different breeding modes[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 254-262.
[4] Gangshuan BAI,Wei GENG,Dengfeng HE. Effects of super absorbent polymer with different application rates on soil characteristics and flue-cured tobacco growth in Qinba mountain area[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 343-354.
[5] CHEN Tingting, LI Xianfu, JIA Chunlei, AN Xueqin, ZHU Jun, XIAO Lizeng, DAI Xiumei, ZHANG Jiankui. Characteristics of new flue-cured tobacco strains developed from Yunyan87 mutants and their DNA fingerprint identification.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 179-189.
[6] YANG Xing1,2, HUANG Huagang1,3*, WANG Ling, SHEN Yan, LU Kouping, HAN Xuebo, WANG Hailong. Pyrolysis temperature optimization of biochar from tobacco stalk and its physicochemical characterization.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 245-255.
[7] Wei Kesu, Hu Tingting, Li Delun, Tu Yonggao, Yu Liangji, Tu Guangjun. Effects of mixed application of effective microorganisms (EM) and soil amendments on agronomic characteristic and quality of flue-cured tobacco[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(4): 439-448.
[8] Lü Tengfei, Zhou Wei, Sun Yongjian, Zhu Yi, Yan Fengjun, Yang Zhiyuan, Ma Jun. Effects of different transplanting seedling ages and nitrogen managements on plant type of indica hybrid rice.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(2): 169-178.
[9] Yang Zhili, Guo Chuanlong, Liu Lei, Wu Konghuan, Wang Lin, Li Kunzhi, Zhao Yan, Chen Limei. Overexpression of soybean SGF14a enhanced tolerance of transgenic tobacco plants to aluminum stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(03): 285-292.
[10] Wu Shengjiang1, Dian Ruili2, Wei Kesu1, Li Delun1, Han Zhikang3, Lin Yechun1, Pan Wenjie1, Xie Yishu1*. Comparison of botanical characters and physiological characteristics among different flue-cured tobacco genotypes in
seedling transplanting period
[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(5): 511-518.
[11] Zhou Jiaping, Yang Chunyuan, Wu Chun, Wang Rengang, Shi Yuewei, Xie Shengdong, Wang Zhihong, Xu Haiming, Ren Xueliang . Genetic diversity and development of core collection in tobacco (Nicotiana tabacum L.) resources[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(4): 440-450.
[12] XU Lu lu,PAN Wen jie,ZHANG Guo ping. Investigation on difference in auto toxicity among tobacco cultivars[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(2): 119-126.
[13] CHENG Weishun,XU Qiufang,LI Fei,XU Youping,CAI Xinzhong. Establishment of a suitable control vector for Tobacco rattle virusinduced gene silencing analysis inNicotiana benthamiana[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(1): 10-20.