Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (2): 254-262    DOI: 10.3785/j.issn.1008-9209.2019.03.281
Animal sciences & veterinary medicine     
Virulence genes and drug resistance characteristics of Escherichia coli in laying duck under the two different breeding modes
Yan ZHAO1(),Junjie JIN1,Minmin REN2,Fengxiang HOU1,Suzhen LIU1,Chengjun XUE3,Yingping XIAO2()
1.Institute of Animal Sciences, Wenzhou Academy of Agricultural Sciences, Wenzhou 325000, Zhejiang, China
2.Institute of Quality and Standard for Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
3.Cangnan County Animal Husbandry and Veterinary Bureau, Cangnan 325800, Zhejiang, China
Download: HTML   HTML (   PDF(948KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

This study mainly compared the virulence genes and drug resistance characteristics of Escherichia coli in laying ducks under the two different breeding modes: net bed with pool and net bed dry-system. Six farms including three net beds with pool and three net bed dry-systems were selected in Wenzhou, Zhejiang Province, and ten laying ducks were collected from each farm. The cotton swabs were used to collect microorganisms in the rectum forthe isolation of E. coli. The VITEK 2 COMPACT analysis system was used to identify the isolates and analyze the drug resistance profile. The virulence genes, drug-resistant genes and class Ⅰ integron genes were amplified by polymerase chain reaction. The results showed that the isolation rate of E. coli in laying ducks was 100%. The detection rates of virulence genes eae, ipa H, invE, aggR and pic of E. coli in the net bed dry-system were higher than those in the net bed with pool. For the drug-resistant phenotype, the proportion of strains with ≥3 resistance in E. coli in the net bed dry-system was 23.33%, while the proportion of strains with ≥3 in the net bed with pool was 10.00%. Similarly, the detection rates of the drug-resistant genes and the class Ⅰ integron genes in the net bed dry-system were also higher than those in the net bed with pool. Four of the 10 strains of class Ⅰ integron-positive E. coli carried the gene cassette insert, one of which derived from the E. coli class Ⅰ integron gene cassette of laying duck in the net bed with pool was dfrA12-aadA2, and the other three strains derived from the E. coli class Ⅰ integron gene cassette of laying duck in the net bed dry-system were dfrA1-aadA1. The above results indicate that the virulence gene carrying rate and drug resistance of E. coli in the intestinal tract of laying duck in the net bed dry-system are higher than those in the net bed with pool. It is suggested tha the changes of breeding mode may have some effect on the drug resistance characteristics of bacteria in waterfowls.



Key wordslaying duck      Escherichia coli      drug-resistant phenotype      drug-resistant gene      virulence gene      class Ⅰ integron     
Received: 28 March 2019      Published: 22 May 2020
CLC:  S 834  
Corresponding Authors: Yingping XIAO     E-mail: yanzhao_wk@163.com;ypxiaozju@126.com
Cite this article:

Yan ZHAO,Junjie JIN,Minmin REN,Fengxiang HOU,Suzhen LIU,Chengjun XUE,Yingping XIAO. Virulence genes and drug resistance characteristics of Escherichia coli in laying duck under the two different breeding modes. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 254-262.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.03.281     OR     http://www.zjujournals.com/agr/Y2020/V46/I2/254


2种养殖模式下蛋鸭大肠埃希菌毒力基因和耐药特征分析

为比较分析在网床水面圈养与网床全旱养2种不同养殖模式下蛋鸭肠道中大肠埃希菌的毒力基因状况和耐药特征,分别在温州地区选择3家网床水面圈养和3家网床全旱养的蛋鸭场,每个蛋鸭场各选取10只蛋鸭,用棉拭子在直肠中采集微生物,用于大肠埃希菌分离,采用VITEK 2 COMPACT全自动细菌鉴定及药敏分析系统对分离株进行鉴定和开展耐药表型分析,并通过聚合酶链式反应(polymerase chain reaction, PCR)扩增毒力基因、耐药基因和Ⅰ型整合酶基因。结果表明:蛋鸭中大肠埃希菌的分离率为100%;网床全旱养蛋鸭肠道大肠埃希菌的毒力基因eaeipa HinvEaggRpic检出率高于网床水面圈养蛋鸭。对于耐药表型,网床全旱养蛋鸭肠道大肠埃希菌耐药数≥3的菌株比例为23.33%,而网床水面圈养中耐药数≥3的菌株比例为10.00%。同样地,耐药基因和Ⅰ型整合酶基因的检出率也为网床全旱养高于网床水面圈养。10株Ⅰ型整合子阳性大肠埃希菌中4株携带基因盒插入片段,其中:1株来源于网床水面圈养蛋鸭,其大肠埃希菌Ⅰ型整合子基因盒插入的为dfrA12-aadA2;3株来源于网床全旱养蛋鸭,均为dfrA1-aadA1。网床全旱养蛋鸭肠道大肠埃希菌的毒力基因携带率和耐药性表型均高于网床水面圈养蛋鸭,说明养殖模式变化对水禽肠道微生物耐药性可产生一定的影响。


关键词: 蛋鸭,  大肠埃希菌,  耐药表型,  耐药基因,  毒力基因,  Ⅰ型整合子 

基因

Gene

GenBank序列号

GenBank accession number

引物序列(5′→3′)

Primer sequence (5′→3′)

产物长度

Product length/bp

eaeZ11541.1

F: ATTACCATCCACACAGACGGT

R: ACAGCGTGGTTGGATCAACCT

397
ipa HCP001064.1

F: TTGACCGCCTTTCCGATACC

R: ATCCGCATCACCGCTCAGAC

647
invEAF283289.1

F: CGATAGATGGCGAGAAATTATATCCCG

R: CGATCAAGAATCCCTAACAGAAGAATCAC

766
ltCP000795.1

F: GAACAGGAGGTTTCTGCGTTAGGTG

R: CTTTCAATGGCTTTTTTTTGGGAGTC

655
aggRZ18751.1

F: ACGCAGAGTTGCCTGATAAAG

R: AATACAGAATCGTCAGCATCAGC

400
picAF097644.1

F: AGCCGTTTCCGCAGAAGCC

R: AAATGTCAGTGAACCGACGATTGG

1 111
Table 1 Information of virulence gene primers

基因

Gene

引物序列(5′→3′)

Primer sequence (5′→3′)

产物长度

Product length/bp

sulⅠ

F: TCACCGAGGACTCCTTCTTC

R: CAGTCCGCCTCAGCAATATC

331
sulⅡ

F: CCTGTTTCGTCCGACACAGA

R: GAAGCGCAGCCGCAATTCAT

435
qnrA

F: TTCAGCAAGAGGATTTCTCA

R: GGCAGCACTATTACTCCCAA

500
oqxB

F: TTCTCCCCCGGCGGGAAGTAC

R: CTCGGCCATTTTGGCGCGTA

512
qnrD

F: TTACGGGGAATAGAGTTA

R: AATCAGCCAAAGACCAAT

468
qnrS

F: ACATAAAGACTTAAGTGAC

R: CAATTAGTCAGGATAAAC

619
qepA

F: CCAGCTCGGCAACTTGATAC

R: ATGCTCGCCTTCCAGAAAA

570
floR

F: AACCCGCCCTCTGGATCAAGTCAA

R: CAAATCACGGGCCACGCTGTATC

548
cmlA

F: CGCCACGGTGTTGTTGTTAT

R: GCGACCTGCGTAAATGTCAC

394
ereA

F: AACACCCTGAACCCAAGGGACG

R: CTTCACATCCGGATTCGCTCGA

420
ermB

F: GAAAAGGTACTCAACCAAATA

R: AGTAACGGTACTTAAATTGTTTAC

639
mef

F: AGTATCATTAATCACTAGTGC

R: TTCTTCTGGTACTAAAAGTGG

348
tetC

F: TTGCGGGATATCGTCCATTC

R: CATGCCAACCCGTTCCATGT

831
tetB

F: CCCAGTGCTGTTGTTGTCAT

R: CCACCACCAGCCAATAAAAT

723
tetK

F: TCGATAGGAACAGCAGTA

R: CCGCAGATCCTACTCCTT

169
tetA

F: GCGCCTTTCCTTTGGGTTCT

R: CCACCCGTTCCACGTTGTTA

831
mecA

F: AAAATCGATGGTAAAGGTTGGC

R: AGTTCTGCAGTACCGGATTTGC

533
mecC

F: GAAAAAAAGGCTTAGAACGCCTC

R: GAAGATCTTTTCCGTTTTCAGC

533
aadA1

F: TATCCAGCTAAGCGCGAAC

R: ATTTGCCGACTACCTTGGT

447
pmrA

F: AGTTTTCCTCATTCGCGACCA

R: TACCAGGCTGCGGATGATATTCT

714
pmrB

F: GGATGGCCTGATGTGACGCTGTC

R: GCGCGGCTTTGGCTATATGCTG

1 312
cfr

F: TAAGAAGTAATAATGAGC

R: TATAGAAAGTCTACGAGG

518
mcr-1

F: CTCGGTCAGTCCGTTTGTTC

R: CTCGGCTTGGTCGGTCTGTA

316
Table 2 Information of drug-resistant gene primers

基因

Gene

引物

Primer

引物序列(5′→3′)

Primer sequence (5′→3′)

产物长度

Product length/bp

TEMTEM-FATGAGTATTCAACATTTCCGTG840
TEM-RTTACCAATGCTTAATCAGTGAG
SHVSHV-FATTTGTCGCTTCTTTACTCGC1 051
SHV-RTTTATGGCGTTACCTTTGACC
CTX-MCTX-M-FTTTGCGATGTGCAGTACCAGTAA544
CTX-M-RCGATATCGTTGGTGGTGCCATA
CTX-M-1-FAAAAATCACTGCGCCAGTTC415
CTX-M-1-RAGCTTATTCATCGCCACGTT
CTX-M-2-FCGACGCTACCCCTGCTATT552
CTX-M-2-RCCAGCGTCAGATTTTTCAGG
CTX-M-9-FCAAAGAGAGTGCAACGGATG205
CTX-M-9-RATTGGAAAGCGTTCATCACC
CTX-M-8-FTCGCGTTAAGCGGATGATGC666
CTX-M-25-FGCACGATGACATTCGGG327
CTX-M-8/25-RAACCCACGATGTGGGTAGC
Table 3 Information of β-lactamase gene primers
Fig. 1 Electrophoretogram of PCR products of eae geneM: DL5000 marker; NC: Negative control; 1-2: E. coli isolated from laying ducks under net bed with pool; 3-4: E. coli isolated from laying ducks under net bed dry-system; PC: Positive control.
Fig. 2 Detection percentage of virulence genes in E. coli
Fig. 3 Drug-resistant strains of E. coli in laying ducks under net bed with pool and net bed dry-system
Fig. 4 Detection percentage of drug-resistant genes of E. coli in laying duck under the net bed with pool and net bed dry-system
Fig. 5 Electrophoretogram of PCR products of CTX-M geneM: DL5000 marker; NC: Negative control; 1-2: Bacterial strains isolated from laying ducks under net bed with pool; 3-4: Bacterial strains isolated from laying ducks under net bed dry-system; PC: Positive control.
Fig. 6 Detection percentage of β-lactamase drug-resistant genes in ESBLs-positive E. coli
Fig. 7 Detection percentage of class Ⅰ integron in E. coli
[1]   王雅鹏,陈娟,何朝秋,等.基于节能减排的水禽养殖模式选择问题探讨.中国家禽,2013,35(15):2-5.
WANG Y P, CHEN J, HE C Q, et al. Discussion on waterfowl rearing model based on energy saving and emission. China Poultry, 2013,35(15):2-5. (in Chinese)
[2]   傅秋玲,黄瑜,程龙飞,等.不同养殖模式蛋鸭疫病的检测与分析.中国兽医杂志,2017,53(3):6-9.
FU Q L, HUANG Y, CHENG L F, et al. Detection and analysis for the epidemic diseases of laying ducks in different breeding models. Chinese Journal of Veterinary Medicine, 2017,53(3):6-9. (in Chinese with English abstract)
[3]   贺丹丹,黄良宗,陈孝杰,等.不同动物源大肠杆菌的耐药性调查.中国畜牧兽医,2013,40(10):211-215.
HE D D, HUANG L Z, CHEN X J, et al. Investigation of antibiotic resistance among Escherichia coli isolated from different animals. China Animal Husbandry and Veterinary Medicine, 2013,40(10):211-215. (in Chinese with English abstract)
[4]   宋立,宁宜宝,沈建忠,等.中国不同年代食品动物大肠杆菌耐药性调查研究.中国科学(C辑:生命科学),2009,39(7):692-698.
SONG L, NING Y B, SHEN J Z, et al. Investigation on antibiotic resistance of Escherichia coli from food in different years in China. Science in China Series C: Life Science, 2009,39(7):692-698. (in Chinese)
[5]   LIM S K, LEE H S, NAM H M, et al. Antimicrobial resistance observed in Escherichia coli strains isolated from fecal samples of cattle and pigs in Korea during 2003—2004. International Journal of Food Microbiology, 2007,116(2):283-286.
[6]   张济培,韦庆兰,谭华龙,等.广东省水禽源大肠杆菌I型整合子的检测分析.中国兽医学报,2016,36(7):1119-1122. DOI:10.16303/j.cnki.1005-4545.2016.07.08
ZHANG J P, WEI Q L, TAN H L, et al. Investigation on class I integrons gene cassettes of Escherichia coli from waterfowl in Guangdong Province. Chinese Journal of Veterinary Science, 2016,36(7):1119-1122. (in Chinese with English abstract)
doi: 10.16303/j.cnki.1005-4545.2016.07.08
[7]   肖根辉,孙浩,何后军,等.鹅致病性大肠杆菌耐药性与整合子研究.中国预防兽医学报,2012,34(10):790-792. DOI:10.3969/j.issn.1008-0589.2012.10.08
XIAO G H, SUN H, HE H J, et al. The research on integrons and drug resistance of the pathogenic E. coli from goose. Chinese Journal of Preventive Veterinary Medicine, 2012,34(10):790-792. (in Chinese with English abstract)
doi: 10.3969/j.issn.1008-0589.2012.10.08
[8]   郭磊,李开锋,王述柏,等.山东地区鸭源大肠杆菌耐药性分析.中国兽医杂志,2018,54(2):87-88.
GUO L, LI K F, WANG S B, et al. Analysis on drug resistance of duck-derived Escherichia coli in Shandong Province. Chinese Journal of Veterinary Medicine, 2018,54(2):87-88. (in Chinese with English abstract)
[9]   国家卫生和计划生育委员会,国家食品药品监督管理总局.食品安全国家标准 食品微生物学检验 致泻大肠埃希氏菌检验:GB 4789.6—2016.北京:中国标准出版社,2017.
National Health and Family Planning Commission of the People’s Republic of China, China Food and Drug Adminis-tration. National Food Safety Standard: Food Microbiological Analysis: Detection of Diarrhea-causing Escherichia Coli: GB 4789.6—2016. Beijing: Standards Press of China, 2017. (in Chinese)
[10]   SANDVANG D, ARESTRUP F M, JENSEN L B. Characterization of integrons and antibiotic resistance genes in Danish multiresistant Salmonella enterica Typhimutium DT104. FEMS Microbiology Letters, 1997,157:177-181. DOI:10.1111/j.1574-6968.1997.tb12770.x
doi: 10.1111/j.1574-6968.1997.tb12770.x
[11]   王佩佩,杨华,戴贤君,等.家禽屠宰场环境和屠宰器械表面微生物菌群结构和耐药基因分析.浙江农业学报,2018,30(7):1249-1258. DOI:10.3969/j.issn.1004-1524.2018.07.20
WANG P P, YANG H, DAI X J, et al. Microbial community structure and drug resistance gene on water, ground and surface of slaughtering equipment in poultry slaughterhouse. Acta Agriculturae Zhejiangensis, 2018,30(7):1249-1258. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-1524.2018.07.20
[12]   XI M L, WU Q, WANG X, et al. Characterization of extended-spectrum β-lactamases-producing Escherichia coli strains isolated from retail foods in Shanxi Province, China. Journal of Food Protection, 2015,78(5):1018-1023. DOI:10.4315/0362-028x.jfp-14-490
doi: 10.4315/0362-028x.jfp-14-490
[13]   钟贞,马永平,邱宗荫,等.肠产毒性大肠埃希菌定植因子研究进展.医学分子生物学杂志,2004,1(1):51-54.
ZHONG Z, MA Y P, QIU Z Y, et al. Advances in the research on colonization factors of enterotoxigenic E. coli. Journal of Medical Molecular Biology, 2004,1(1):51-54. (in Chinese with English abstract)
[14]   SOUFI L, SAENZ Y, VINUE L, et al. Escherichia coli of poultry food origin as reservoir of sulphonamide resistance genes and integrons. International Journal of Food Microbiology, 2011,144(3):497-502. DOI:10.1016/j.ijfoodmicro.2010.11.008
doi: 10.1016/j.ijfoodmicro
[15]   邓伯雄,刘情,邓安元,等.鸭致病性大肠杆菌分离鉴定及其相关致病性分析.中国畜牧兽医,2016,43(1):235-241. DOI:10.16431/j.cnki.1671-7236.2016.01.034
DENG B X, LIU Q, DENG A Y, et al. Isolation, identification and related pathogenicity analysis of duck pathogenic E. coli. China Animal Husbandry and Veterinary Medicine, 2016,43(1):235-241. (in Chinese with English abstract)
doi: 10.16431/j.cnki.1671-7236.2016.01.034
[16]   GALAS M, DECOUSSER J W, BRETON N, et al. Nationwide study of the prevalence, characteristics, and molecular epidemiology of extended-spectrum-beta-lactamase-producing Enterobacteriaceae in France. Antimicrobial Agents and Chemotherapy, 2008,52(2):786-789. DOI:10.1128/aac.00906-07
doi: 10.1128/aac
[17]   TAMANG M D, NAM H M, JANG G C, et al. Molecular characterization of extended-spectrum-β-lactamase-producing and plasmid-mediated AmpC β-lactamase-producing Escherichia coli isolated from stray dogs in South Korea. Antimicrobial Agents and Chemotherapy, 2012,56(5):2705-2712. DOI:10.1128/aac.05598-11
doi: 10.1128/aac.05598-11
[18]   PFEIFER Y, CULLIK A, WITTE W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. International Journal of Medical Microbiology, 2010,300(6):371-379. DOI:10.1016/j.ijmm.2010.04.005
doi: 10.1016/j.ijmm.2010.04.005
[19]   吴华,裴亚玲,刘建华,等.鸭大肠杆菌超广谱β-内酰胺酶检测(ESBLs)及药物敏感性测定.安徽农业大学学报,2008,35(3):462-468. DOI:10.13610/j.cnki.1672-352x.2008.03.032
WU H, PEI Y L, LIU J H, et al. Determination of ESBLs and antibiotics susceptibility test analysis for avian pathogenic Escherichia coli from the disease duck. Journal of Anhui Agricultural University, 2008,35(3):462-468. (in Chinese with English abstract)
doi: 10.13610/j.cnki.1672-352x.2008.03.032
[20]   刘保光,肖尚修,吴华,等.鸭大肠杆菌超广谱β-内酰胺酶的检测及药物敏感性分析.中国畜牧兽医,2010,37(9):188-191.
LIU B G, XIAO S X, WU H, et al. The ESBLs detection of duck E.coli and drug susceptibility analysis. China Animal Husbandry and Veterinary Medicine, 2010,37(9):188-191. (in Chinese with English abstract)
[21]   BENNETT P M. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. British Journal of Pharmacology, 2008,153(Suppl. 1):S347-S357. DOI:10.1038/sj.bjp.0707607
doi: 10.1038/sj.bjp.0707607
[1] Tiantian GU,Yong TIAN,Wei ZHOU,Guofa LIU,Li CHEN,Tao ZENG,Xinsheng WU,Qi XU,Guohong CHEN,Lizhi LU. Effects of caged stress on the duodenal tissue structure, antioxidant capacity and gene mRNA expression level of Shaoxing duck[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 234-242.
[2] LI Li, MIAO Zhongwei, XIN Qingwu, ZHU Zhiming, ZHANG Linli, LI Zhongrong, ZHENG Nenzhu. Effects of selenium-enriched yeast and astragalus polysaccharide on slaughter performance, serum biochemical and antioxidant indexes of mule duck[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 502-510.
[3] LUO Jun, LIU Hehe, LIU Junying, ZHANG Tao, WANG Yushi, HAN Chunchun . Molecular cloning, bioinformatics of the duck RIG-1 promoter region, and its differential expression profiles in embryo stages[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 104-112.
[4] Li Li, Xu Qi, Chen Yang, Huang Xuetao, Li Liumeng, Tao Zhonglian, Chen Guohong. Correlation between the polymorphism of   growth hormone  gene  with the  growth performance  in Shaoxing ducks[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(03): 365-370.