Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (2): 191-206    DOI: 10.3785/j.issn.1008-9209.2021.03.041
Resource utilization & environmental protection     
Safety application ratio and environmental capacity of partial substitution of chemical nitrogen fertilizer with organic fertilizer: a case study of cultivation of lettuce in typical soils
Siting GU1(),Jian CHEN2,Zhiyang LI1,Jiachun SHI1()
1.Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
2.Bureau of Agriculture and Rural Affairs and Water Resource of Wenling, Taizhou 317500, Zhejiang, China
Download: HTML   HTML (   PDF(1066KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Pot experiments of lettuce in nine different typical types of soils, combined with multiple linear regression and static capacity model of soil environment, were conducted, and the effects of different ratios of substituting chemical nitrogen fertilizer by organic fertilizer on soil environmental quality, yield, and the safety of agricultural products and soil environmental capacity were studied. The results showed that partial substitution of chemical nitrogen fertilizer with organic fertilizer increased the total nitrogen and organic matter contents of the soil (except fluvio-marine yellow loamy soil), and significantly increased the yield of lettuce. The accumulations of heavy metals in different soil types and lettuce shoots under different fertilization treatments were significantly different. The application of organic fertilizer significantly increased the Cd contents in powdery-loamy paddy soil, silt-clayey yellow mettled paddy soil and hapl fluvo-aquic loamy soil. The contents of Cd, Cr, As, and Pb of lettuce planted in silt-clayey yellow mettled paddy soil, powdery-loamy paddy soil and hapl fluvo-aquic loamy soil all increased significantly after applying organic fertilizer, but decreased significantly in yellow-red soil. For the pot experiment with lettuce, the safety application ratios of organic fertilizer in hapl fluvo-aquic loamy soil, blue clayey paddy soil, silt-clayey yellow mettled paddy soil, powdery-loamy paddy soil, fluvio-marine yellow loamy soil, yellow-red soil and paddy field on desalting clayey polder were 10%, 20%, 30%, 10%, 30%, 20%, and 40%, respectively. The soil heavy metal environmental capacity decreased with the increase of application years of partial substitution of chemical nitrogen fertilizer with organic fertilizer, so it is important to strictly limit the application amount of organic fertilizer to protect the soil environment.



Key wordscultivation of lettuce      partial substitution of chemical nitrogen fertilizer with organic fertilizer      heavy metal      soil environmental capacity     
Received: 04 March 2021      Published: 29 April 2022
CLC:  X 53  
Corresponding Authors: Jiachun SHI     E-mail: 3140100491@zju.edu.cn;jcshi@zju.edu.cn
Cite this article:

Siting GU,Jian CHEN,Zhiyang LI,Jiachun SHI. Safety application ratio and environmental capacity of partial substitution of chemical nitrogen fertilizer with organic fertilizer: a case study of cultivation of lettuce in typical soils. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(2): 191-206.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.03.041     OR     https://www.zjujournals.com/agr/Y2022/V48/I2/191


有机肥部分替代化学氮肥的安全施用比例及环境容量研究——以典型土壤生菜种植为例

通过对浙江省9种不同典型土壤进行生菜种植盆栽试验,并联合多元线性回归和土壤环境静态容量模型,研究不同有机肥替代化学氮肥比例对土壤环境质量、农产品产量及质量和土壤环境容量变化的影响。结果表明:有机肥部分替代化学氮肥施用增加了土壤全氮和有机质的含量(除黄松土外),且显著增加了生菜产量。不同施肥处理下不同土壤类型及其生菜地上部重金属累积差异明显,有机肥施用显著增加了小粉土、培泥砂土和黄斑田的镉(Cd)含量。施加有机肥后,在黄斑田、小粉土和培泥砂土上种植的生菜地上部Cd、铬(Cr)、砷(As)和铅(Pb)含量显著上升,但黄红壤中的显著下降。在培泥砂土和小粉土上种植生菜的有机肥部分替代化学氮肥的安全施用推荐比例均为10%,青紫泥田和黄红壤均为20%,黄斑田和黄松土均为30%,淡涂粘田为40%。随着有机肥替代施用年限的增长,土壤重金属环境容量逐渐降低,因此,严格管控有机肥的施用量及施用年限有助于保障土壤环境质量和农产品的安全。


关键词: 生菜种植,  有机肥部分替代化学氮肥,  重金属,  土壤环境容量 

品种

Variety

土壤及有机肥类型

Soil and

manure types

pH

w(全氮)

TN/(g/kg)

w(有机质)

OM/%

电导率

EC/(mS/cm)

w(重金属)

Total HM/(mg/kg)

CdCrAsPbCuZn

正源463

Zhengyuan 463

黄斑田 SP7.200.641.390.070.0789.0911.8225.5522.3667.24
小粉土 PP7.690.490.940.120.1048.016.1820.8112.9868.39
培泥砂土 HL8.650.120.240.080.1251.5115.2012.538.9939.20

高华意大利全年

耐抽薹生菜

Italian bolting

resistant lettuce

黄泥砂田 PR5.881.000.740.030.3844.5912.4728.3419.4573.18
淡涂粘田 PC8.161.232.140.300.2185.068.7135.0124.1098.50
青紫泥田 BP6.942.431.870.090.2973.778.6647.4327.59102.23
黄松土 FL8.320.240.340.070.0954.775.0915.278.2347.68
黄红壤 YR6.870.792.360.060.1251.088.7819.3220.1958.27
洪积泥砂田 DP7.762.651.530.201.2871.6310.05175.80326.45222.98
猪粪有机肥 SM8.321.2146.204.350.5426.982.8731.5861.05240.20
Table 1 Physicochemical properties and heavy metal contents of the tested soil and organic fertilizer in pot experiment with lettuce
Fig. 1 Effects of partial substitution of chemical nitrogen fertilizer with organic fertilizer on soil pHCK: No nitrogen fertilizer; F: Only applying nitrogen fertilizer (1.54 g urea); M1: 1.39 g urea+2.62 g organic fertilizer; M2: 1.23 g urea+5.24 g organic fertilizer; M3: 1.08 g urea+7.87 g organic fertilizer; M4: 0.93 g urea+10.49 g organic fertilizer. Different lowercase letters above bars indicate significant differences among different treatments in the same soil type at the 0.05 probability level; n=3. The same below.
Fig. 2 Effects of partial substitution of chemical nitrogen fertilizer with organic fertilizer on soil OM content
Fig. 3 Effects of partial substitution of chemical nitrogen fertilizer with organic fertilizer on soil total nitrogen (TN) content
Fig. 4 Effects of partial substitution of chemical nitrogen fertilizer with organic fertilizer on Cd, Cr, As, Pb contents in soils
 
处理Treatment黄斑田 SP小粉土 PP培泥砂土 HL黄泥砂田 PR淡涂粘田 PC

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

CK59.12b44.62c53.21f46.91b63.60b
F74.09ab25.3180.11abc79.55158.97e198.7863.18ab34.6981.66b28.40
M193.53ab58.1984.10ab88.48173.03d225.2248.63b3.6685.20ab33.95
M295.48ab61.49106.47ab138.63228.27b328.9682.81a76.5387.55ab37.65
M3108.28a83.14113.68a154.79238.35a347.9976.43a62.9389.89ab41.34
M4114.21a93.1779.79abc78.83220.12c313.7262.64ab33.54112.48a76.85
处理Treatment青紫泥田 BP黄松土 FL黄红壤 YR洪积泥砂田 DP

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

产量/(g/盆)

Yield/

(g/pot)

增产率Improved

rate/%

CK55.46c56.05e95.60d154.19d
F117.56ab111.97127.69d127.82155.55b62.71248.36b61.07
M192.18b66.20130.75cd133.28156.80b64.01186.94c21.24
M2125.91a127.03141.04ab151.63173.52a81.51238.46b54.66
M3107.59ab93.99148.46a164.86126.23c32.04274.73a78.17
M4105.46ab90.16138.84bc147.70159.62b66.97180.26c16.91
Table 2 Effects of partial substitution of chemical nitrogen fertilizer with organic fertilizer on the yields of lettuces
 
Fig. 5 Effects of partial substitution of chemical nitrogen fertilizer with organic fertilizer on Cd, Cr, As, Pb contents in the shoots of lettuces
土壤类型 Soil type元素 Element多元线性回归方程 Multiple linear regression equationR2

小粉土

PP

Cdy =0.64a+0.075b-0.560.55
Cry =0.058a+0.51d-2.860.71
Asy =-0.25b+0.26c-0.91e+2.000.75
Pby =0.032a-0.470.42

黄斑田

SP

Cdy =0.45a+0.021b-0.0990.83
Cry =0.009 8a-0.730.87
Asy =0.019a+0.13c-0.240.77
Pby =-0.063+0.010a0.61

培泥砂土

HL

Cdy =0.015+0.56a+0.000 058f0.83
Cry =0.030a+0.43c-1.510.87
Asy =0.73c+0.150.46
Pby =0.32c+0.0660.71

青紫泥田

BP

Cdy =-0.090c+0.001 9f+0.120.34
Cry =0.013a+0.21b+0.12c+0.002 8f-3.060.82
Asy =0.004 2a-0.007 0b-0.000 082f+0.0300.59
Pby =-0.062 8b+0.4560.58

淡涂粘田

PC

Cdy =0.14d+0.017c-0.110.60
Cry =-0.007 0f+1.090.28
Asy =-0.012e-0.015d+0.0310.44
Pby =-0.085e+0.0460.45

黄泥砂田

PR

Cdy=1.32d-0.990.25
Cry =-7.54e+0.52c+1.870.33
Asy =-0.006 3c+0.0280.21
Pby =-0.054b+0.360.21

黄松土

FL

Cdy =0.030d-0.000 035f +0.008 40.47
Cry =0.001 1a+0.45e-0.000 15f-0.0400.45
Asy =0.000 031f+0.001 90.45
Pby =-0.000 11f+0.0320.35

黄红壤

YR

Cdy =0.064b-0.280.54
Cry =0.015b+0.019d-0.0970.76
Asy =0.002 1a+0.003 4b-0.007 6c-0.0170.72
Pby =0.016b-0.0620.24

洪积泥砂田

DP

Cdy =0.47a-0.20b+1.340.68
Cry =0.027c+0.002 10.28
Asy =-0.001 0b-0.009 5c+0.0260.70
Pby =-0.059b-0.51e+0.640.48
Table 3 Multiple linear regression equations between Cd, Cr, As and Pb contents in the shoots of lettuces and other factors

土壤类型

Soil type

元素

Element

10年

10 years

20年

20 years

50年

50 years

100年

100 years

小粉土

PP

Cd0.0400.0200.0080.004
Cr1.340.670.270.13
As4.232.120.850.42
Pb0.7500.3700.1500.075

黄斑田

SP

Cd0.0590.0300.0120.006
Cr8.044.021.610.80
As3.991.990.800.40
Pb2.341.170.470.23

培泥砂土

HL

Cd0.0380.0190.0080.004
Cr2.481.240.500.25
As2.201.100.440.22
Pb35.4317.727.093.54

青紫泥田

BP

Cd0.002 00.001 00.000 50.000 2
Cr9.614.811.920.96
As4.802.400.960.48
Pb16.338.163.271.63

淡涂粘田

PC

Cd0.0890.0440.0180.009
Cr37.1118.567.423.71
As3.671.830.730.37
Pb30.3715.196.083.04

黄松土

FL

Cd0.1200.0580.0230.012
Cr43.9321.968.794.39
As4.482.240.900.45
Pb34.8217.416.963.48

黄红壤

YR

Cd0.0400.0200.0080.004
Cr33.5016.756.703.35
As4.772.390.960.48
Pb22.6511.334.532.27
Table 4 Average annual environmental capacity of soil heavy metals

土壤类型

Soil type

CKFM1M2M3M4

均值

Mean

小粉土

PP

0.749b0.641c0.665c0.886a0.636c0.773b0.725

黄斑田

SP

1.299a0.763bc0.742c0.761bc0.732c0.804b0.850

培泥砂土

HL

0.739c0.985a0.791bc0.861b0.827bc0.864b0.844

青紫泥田

BP

0.299a0.223b0.296a0.292a0.306a0.266ab0.280

淡涂粘田

PC

0.264c0.449ab0.361bc0.436ab0.474ab0.491a0.413

黄泥砂田

PR

1.015c1.515a1.236abc1.127bc1.412ab0.918c1.204

黄松土

FL

0.104c0.135b0.118bc0.112c0.113c0.160a0.124

黄红壤

YR

0.794a0.763a0.600c0.540c0.723ab0.630bc0.675

洪积泥砂田

DP

0.316d0.326cd0.366c0.454b0.506a0.434b0.400
Table 5 Bioconcentration factors of Cd in the shoots of lettuces under different organic fertilizer substitution treatments in different soils
[1]   宁川川,王建武,蔡昆争.有机肥对土壤肥力和土壤环境质量的影响研究进展[J].生态环境学报,2016,25(1):175-181. DOI:10.16258/j.cnki.1674-5906.2016.01.026
NING C C, WANG J W, CAI K Z. The effects of organic fertilizers on soil fertility and soil environmental quality: a review[J]. Ecology and Environmental Sciences, 2016, 25(1): 175-181. (in Chinese with English abstract)
doi: 10.16258/j.cnki.1674-5906.2016.01.026
[2]   HAMID Y, TANG L, HUSSAIN B, et al. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: a review[J]. Science of the Total Environment, 2020, 707: 136121. DOI:10.1016/j.scitotenv.2019.136121
doi: 10.1016/j.scitotenv.2019.136121
[3]   中华人民共和国农业部.到2020年化肥使用量零增长行动方案[EB/OL].(2015-02-17)[2021-06-07]. . DOI:10.3969/j.issn.1008-7117.2015.02.001
Ministry of Agriculture of the People’s Republic of China. Zero Growth in Fertilizer Use by 2020[EB/OL].(2015-02-17)[2021-06-07].
doi: 10.3969/j.issn.1008-7117.2015.02.001
[4]   YANG S Y, ZHAO J, CHANG S X, et al. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: a synthesis[J]. Environment International, 2019, 128: 165-174. DOI:10.1016/j.envint.2019.04.044
doi: 10.1016/j.envint.2019.04.044
[5]   WAN Y N, HUANG Q Q, WANG Q, et al. Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure[J]. Journal of Hazardous Materials, 2020, 384: 121293. DOI:10.1016/j.jhazmat.2019.121293
doi: 10.1016/j.jhazmat.2019.121293
[6]   WANG X B, LIU W X, LI Z G, et al. Effects of long-term fertilizer applications on peanut yield and quality and plant and soil heavy metal accumulation[J]. Pedosphere, 2020, 30(4): 555-562. DOI:10.1016/S1002-0160(17)60457-0
doi: 10.1016/S1002-0160(17)60457-0
[7]   徐一兰,金自力,刘唐兴,等.不同施肥措施对双季稻田土壤和大麦植株镉累积的影响[J].生态环境学报,2017,26(7):1235-1241. DOI:10.16258/j.cnki.1674-5906.2017.07.021
XU Y L, JIN Z L, LIU T X, et al. Effects of long-term fertilization on heavy metal Cd accumulation in the surface soil and barley plant of double-cropping paddy rice system[J]. Ecology and Environmental Sciences, 2017, 26(7): 1235-1241. (in Chinese with English abstract)
doi: 10.16258/j.cnki.1674-5906.2017.07.021
[8]   何其辉,谭长银,曹雪莹,等.肥料对土壤重金属有效态及水稻幼苗重金属积累的影响[J].环境科学研究,2018,31(5):942-951. DOI:10.13198/j.issn.1001-6929.2018.01.18
HE Q H, TAN C Y, CAO X Y, et al. Effects of fertilizer on the availability of heavy metals in soil and its accumulation in rice seedling[J]. Research of Environmental Sciences, 2018, 31(5): 942-951. (in Chinese with English abstract)
doi: 10.13198/j.issn.1001-6929.2018.01.18
[9]   GRüTER R, COSTEROUSSE B, MAYER J, et al. Long-term organic matter application reduces cadmium but not zinc concentrations in wheat[J]. Science of the Total Environment, 2019, 669: 608-620. DOI:10.1016/j.scitotenv.2019.03.112
doi: 10.1016/j.scitotenv.2019.03.112
[10]   张杨珠,龙怀玉,汤宏,等.不同施肥结构对两种叶菜类蔬菜的产量及肥料养分吸收与利用的影响[J].湖南农业科学,2013(19):43-47. DOI:10.16498/j.cnki.hnnykx.2013.19.032
ZHANG Y Z, LONG H Y, TANG H, et al. Influences of different fertilization structures on yield and nutrients uptake and nutrients use efficiency of two kinds of leafy vegetable[J]. Hunan Agricultural Sciences, 2013(19): 43-47. (in Chinese with English abstract)
doi: 10.16498/j.cnki.hnnykx.2013.19.032
[11]   周雅,毕春娟,周枭潇,等.上海市郊工业区附近蔬菜中重金属分布及其健康风险[J].环境科学,2017,38(12):5292-5298. DOI:10.13227/j.hjkx.201702104
ZHOU Y, BI C J, ZHOU X X, et al. Distribution characteristics and health risk for heavy metals in vegetables near the industrial areas in Shanghai[J]. Environmental Science, 2017, 38(12): 5292-5298. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201702104
[12]   武星魁,姜振萃,陆志新,等.有机肥部分替代化肥氮对叶菜产量和环境效应的影响[J].中国生态农业学报(中英文),2020,28(3):349-356. DOI:10.13930/j.cnki.cjea.190761
WU X K, JIANG Z C, LU Z X, et al. Effects of the partial replacement of chemical fertilizer with manure on the yield and nitrogen emissions in leafy vegetable production[J]. Chinese Journal of Eco-Agriculture, 2020, 28(3): 349-356. (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.190761
[13]   鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000. DOI:10.1080/0005772x.2000.11099478
BAO S D. Soil Agrochemical Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
doi: 10.1080/0005772x.2000.11099478
[14]   成杰明,于金光,王明聪.土壤重金属环境容量研究[M].北京:科学出版社,2017.
CHENG J M, YU J G, WANG M C. Study on Environmental Capacity of Soil Heavy Metals[M]. Beijing: Science Press, 2017. (in Chinese)
[15]   李志洋.有机肥部分替代化学氮肥安全施用及土壤环境容量研究:以生菜和水稻为例[D].杭州:浙江大学,2018:43-44.
LI Z Y. Safety application of organic manure partial substitution chemical nitrogen fertilizer and soil environmental capacity: taking lettuce and rice as example[D]. Hangzhou: Zhejiang University, 2018: 43-44. (in Chinese with English abstract)
[16]   中华人民共和国生态环境部. 土壤环境质量 农用地土壤污染风险管控标准(试行): [S].北京:中国标准出版社,2018.
Ministry of Ecology and Environment of the People’s Republic of China. Soil Environmental Quality Risk Control Standard of Soil Contamination of Agricultural Land: GB 15618—2018 [S]. Beijing: Standards Press of China, 2018. (in Chinese)
[17]   中华人民共和国国家卫生健康委员会. 食品安全国家标准 食品中污染物限量: [S].北京:中国标准出版社,2017. DOI:10.3971/j.issn.1000-8578.2022.03.0001
National Health Commission of the People’s Republic of China. State Criteria for Food Safety Contaminant Limits in Food: GB 2762—2017 [S]. Beijing: Standards Press of China, 2017. (in Chinese)
doi: 10.3971/j.issn.1000-8578.2022.03.0001
[18]   CAI Z J, WANG B, XU M G, et al. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China[J]. Journal of Soils and Sediments, 2015, 15(2): 260-270. DOI:10.1007/s11368-014-0989-y
doi: 10.1007/s11368-014-0989-y
[19]   WANG L, BUTTERLY C R, TIAN W, et al. Effects of fertilization practices on aluminum fractions and species in a wheat soil[J]. Journal of Soils and Sediments, 2016, 16(7): 1933-1943. DOI:10.1007/s11368-016-1380-y
doi: 10.1007/s11368-016-1380-y
[20]   XU J M, TANG C, CHEN Z L. The role of plant residues in pH change of acid soils differing in initial pH[J]. Soil Biology & Biochemistry, 2006, 38(4): 709-719. DOI:10.1016/j.soilbio.2005.06.022
doi: 10.1016/j.soilbio.2005.06.022
[21]   CAI A D, XU M G, WANG B, et al. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility[J]. Soil and Tillage Research, 2019, 189: 168-175. DOI:10.1016/j.still.2018.12.022
doi: 10.1016/j.still.2018.12.022
[22]   CAI A D, XU H, SHAO X F, et al. Carbon and nitrogen mineralization in relation to soil particle-size fractions after 32 years of chemical and manure application in a continuous maize cropping system[J]. PLoS ONE, 2016, 11(3): e152521. DOI:10.1371/journal.pone.0152521
doi: 10.1371/journal.pone.0152521
[23]   GONG Q, CHEN P Z, SHI R G, et al. Health assessment of trace metal concentrations in organic fertilizer in Northern China[J]. International Journal of Environmental Research and Public Health, 2019, 16(6): 1031. DOI:10.3390/ijerph16061031
doi: 10.3390/ijerph16061031
[24]   穆虹宇,庄重,李彦明,等.我国畜禽粪便重金属含量特征及土壤累积风险分析[J].环境科学,2020,41(2):986-996. DOI:10.13227/j.hjkx.201903078
MU H Y, ZHUANG Z, LI Y M, et al. Heavy metal contents in animal manure in China and the related soil accumulation risks[J]. Environmental Science, 2020, 41(2): 986-996. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201903078
[25]   何梦媛,董同喜,茹淑华,等.畜禽粪便有机肥中重金属在土壤剖面中积累迁移特征及生物有效性差异[J].环境科学,2017,38(4):1576-1586. DOI:10.13227/j.hjkx.201609227
HE M Y, DONG T X, RU S H, et al. Accumulation and migration characteristics in soil profiles and bioavailability of heavy metals from livestock manure[J]. Environmental Science, 2017, 38(4): 1576-1586. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201609227
[26]   MA J F, CHEN Y P, ANTONIADIS V, et al. Assessment of heavy metal(loid)s contamination risk and grain nutritional quality in organic waste-amended soil[J]. Journal of Hazardous Materials, 2020, 399: 123095. DOI:10.1016/j.jhazmat.2020.123095
doi: 10.1016/j.jhazmat.2020.123095
[27]   黄小洋,邵劲松,马运涛.施用猪粪有机肥对土壤环境质量的影响[J].河南农业科学,2017,46(11):60-68. DOI:10.15933/j.cnki.1004-3268.2017.11.011
HUANG X Y, SHAO J S, MA Y T. Effects of the application of pig manure organic fertilizers on soil environment quality[J]. Journal of Henan Agricultural Sciences, 2017, 46(11): 60-68. (in Chinese with English abstract)
doi: 10.15933/j.cnki.1004-3268.2017.11.011
[28]   夏文建,张丽芳,刘增兵,等.长期施用化肥和有机肥对稻田土壤重金属及其有效性的影响[J].环境科学,2021,42(5):1-13. DOI:10.13227/j.hjkx.202008094
XIA W J, ZHANG L F, LIU Z B, et al. Effects of long-term application of chemical fertilizers and organic fertilizers on heavy metals and their availability in reddish paddy soil[J]. Environmental Science, 2021, 42(5): 1-13. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.202008094
[29]   XIAO A W, OUYANG Y, LI W C, et al. Effect of organic manure on Cd and As accumulation in brown rice and grain yield in Cd-As-contaminated paddy fields[J]. Environmental Science and Pollution Research, 2017, 24(10): 9111-9121. DOI:10.1007/s11356-017-8460-4
doi: 10.1007/s11356-017-8460-4
[30]   方成,代子雯,李伟明,等.化肥减施配施不同有机肥对甜糯玉米产量和品质的影响[J].生态学杂志,2021,40(5):1347-1355. DOI:10.13292/j.1000-4890.202105.003
FANG C, DAI Z W, LI W M, et al. Effects of reduced chemical fertilizer with organic fertilizer application on the yield and grain quality of sweet-waxy corn[J]. Chinese Journal of Ecology, 2021, 40(5): 1347-1355. (in Chinese with English abstract)
doi: 10.13292/j.1000-4890.202105.003
[31]   ZHEN H Y, JIA L, HUANG C D, et al. Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production[J]. Environmental Pollution, 2020, 263: 114552. DOI:10.1016/j.envpol.2020.114552
doi: 10.1016/j.envpol.2020.114552
[32]   李兴菊,王定勇,叶展.水溶性有机质对镉在土壤中吸附行为的影响[J].水土保持学报,2007,21(2):159-162. DOI:10.3321/j.issn:1009-2242.2007.02.040
LI X J, WANG D Y, YE Z. Cadmium adsorption in soil influenced by dissolved organic matters derived from pig manure and rice straw[J]. Journal of Soil and Water Conservation, 2007, 21(2): 159-162. (in Chinese with English abstract)
doi: 10.3321/j.issn:1009-2242.2007.02.040
[33]   YU Y, WAN Y N, CAMARA A Y, et al. Effects of the addition and aging of humic acid-based amendments on the solubility of Cd in soil solution and its accumulation in rice[J]. Chemosphere, 2018, 196: 303-310. DOI:10.1016/j.chemo sphere.2018.01.002
doi: 10.1016/j.chemo
[34]   LIU L N, CHEN H S, CAI P, et al. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost[J]. Journal of Hazardous Materials, 2009, 163: 563-567. DOI:10.1016/j.jhazmat.2008.07.004
doi: 10.1016/j.jhazmat.2008.07.004
[35]   WEI Z M, ZHAO X Y, ZHU C W, et al. Assessment of humification degree of dissolved organic matter from different composts using fluorescence spectroscopy technology[J]. Chemosphere, 2014, 95: 261-267. DOI:10.1016/j.chemo sphere.2013.08.087
doi: 10.1016/j.chemo
[1] Fugui ZHANG,Xiaomeng CHENG,Honghong MA,Binbin SUN,Min PENG. Discuss on scientific construction of ecological risk assessment methods in the high background areas of soil heavy metals[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 57-67.
[2] Qiyao ZHOU,Yuanjun NI,Shun’an XU,Qiong WANG,Lichuan ZHAN,Ying FENG. Effects of foliar conditioners on safety production of main rice varieties in cadmium-contaminated farmland in eastern Zhejiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(6): 768-776.
[3] Bo YANG,Bo ZHANG,Peijie YAN,Yingjie WANG,Juandi WU,Yu ZHANG,Shunyu HAN. Spatial distribution characteristics and risk assessment of soil heavy metals in wine-making vineyard in Jiayuguan City, Gansu Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(6): 777-786.
[4] Wenbin TONG,Xuerui CAO,Jianfeng JIANG,Xiaozi WANG,Guoqun LIU,Jianzhong SONG,Zehra AFSHEEN,Xiao’e YANG. Study on the remediation patterns of rotation or intercropping between hyperaccumulator Sedum alfredii and oil crops in cadmium and lead co-contaminated agricultural soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 212-222.
[5] Yu FU,Peng ZHANG,Junli REN,Xiumei SUN,Qing HAO,Chenghu YANG. Effect of pyrolysis temperature on characteristics of heavy metals in different macroalgal biochars[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 727-736.
[6] Meihua DENG,Youwei ZHU,Lili DUAN,Jing SHEN,Ying FENG. Analysis on integrated remediation model of phytoremediation coupled with agro-production for heavy metal pollution in farmland soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 135-150.
[7] Xufeng FEI,Zhouqiao REN,Zhaohan LOU,Rui XIAO,Xiaonan Lü. Prediction of soil heavy metal content under spatial scale based on Bayesian maximum entropy and auxiliary information[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 452-459.
[8] LUO Jipeng, TAO Qi, WU Keren, LI Tingqiang. Research progress in composition and function of hyperaccumulator-associated endogenous microorganism community[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 515-529.
[9] XU Changchun, ZHENG Ge, LIN Youhua. Analysis of program for research and development on comprehensive prevention and control techniques for agricultural non-point source and heavy metal polluted croplands[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 657-662.
[10] SUN Yefang, XING Hai, WU Weihong, WEN Xiujuan, GU Chao, YE Kun, GU Guoping. Control of heavy metal accumulations in soil-cabbage (Brassica chinensis L.) system of lead/zinc mine tailings using phosphorus fertilizer[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 787-796.
[11] ZHANG Wei, SHI Jiachun. Effects of different passivators and vermicomposting on fractionations of copper and zinc from pig manure[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 775-786.
[12] LIU Chen, GUO Jia, ZHAO Min, ZHONG Bin, GUO Hua, HOU Shuzhen, XU Weijie, YANG Yun, WANG Renyuan, YE Zhengqian, LIU Dan. Effects of moso bamboo and Sedum plumbizincicola intercropping on transport and accumulation of Cu, Cd and Zn in soil-plant system[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 615-622.
[13] ZHANG Dong, LIU Xingyuan, ZHAO Hongting. Research progress in effects of biochar on transport of inorganic pollutants in soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(04): 451-459.
[14] LI Haiguang, SHI Jiachun*, WU Jianjun. Spatial variability characteristics of soil heavy metals in the cropland and its pollution
source identification around the contaminated sites
[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(3): 325-334.
[15] . Reduction of solubility, bioavailability, and bioaccessibility of heavy metals in polluted soil by mineral amendments[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 629-638.