Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (1): 57-67    DOI: 10.3785/j.issn.1008-9209.2021.03.011
Resource utilization & environmental protection     
Discuss on scientific construction of ecological risk assessment methods in the high background areas of soil heavy metals
Fugui ZHANG1,2,3,4(),Xiaomeng CHENG1,2,3,Honghong MA1,2,3,Binbin SUN1,2,3,Min PENG1,2,3
1.Research Center of Geochemical Survey and Assessment on Land Quality, China Geological Survey, Langfang 065000, Hebei, China
2.Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, Hebei, China
3.Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth’s Critical Zone, China Geological Survey, Langfang 065000, Hebei, China
4.College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
Download: HTML   HTML (   PDF(3894KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to scientifically identify and evaluate the soil heavy metal pollution and ecological risk in the background area with high heavy metal contents, 309 sets of maize and rhizosphere soil samples were collected in Hezhen Town of Hezhang County of Guizhou Province, and 20 maize samples from different parts of roots, stems and leaves were collected. The contents of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) were analyzed in topsoil and maize samples. Also, speciations of heavy metals in the rhizosphere soil samples were analyzed (Cr was not measured). The results showed that the contents of heavy metals in the soils were relatively high, and the averages were remarkably higher than the national soil background value (NBV), and the content of Cd element was nearly seven times higher than the NBV. The soil was mainly acidic, and the ecological risk was high based on the total amount of heavy metals. Speciation analysis indicated that heavy metals (As, Cu, Hg, Ni, Pb, and Zn) mainly existed in the forms of strong organic binding state and residual state, with low bioavailability, and the bioavailability of Cd was high. The ecological risk was mainly caused by Cd based on speciation of heavy metals. In the soil-corn system, the bioconcentration factors and translocation factors were both low, so heavy metals were difficult to be enriched in the corn. The contents of heavy metals in corn seeds did not exceed the standard, and the crops were safe. The above results provide a theoretical basis for further studying the migration and transformation law of heavy metals in rock-soil-gas-biota media, integrating geology, pedology and biology to establish a unified standard, and scientifically evaluating the ecological environment risk and health risk.



Key wordssoil heavy metal      ecological risk assessment      speciation      soil contamination      high background area     
Received: 01 March 2021      Published: 04 March 2022
CLC:  X 53  
Corresponding Authors: Fugui ZHANG     E-mail: zfugui@mail.cgs.gov.cn
Cite this article:

Fugui ZHANG,Xiaomeng CHENG,Honghong MA,Binbin SUN,Min PENG. Discuss on scientific construction of ecological risk assessment methods in the high background areas of soil heavy metals. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 57-67.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.03.011     OR     https://www.zjujournals.com/agr/Y2022/V48/I1/57


科学构建土壤重金属高背景区生态风险评价方法的探讨

为了科学地识别和评价重金属含量高背景区中土壤重金属污染情况和生态风险,在贵州省赫章县河镇乡采集玉米及其对应的根系土样品309组,并采集20件玉米根茎叶不同部位样品,测定其砷(As)、镉(Cd)、铬(Cr)、铜(Cu)、汞(Hg)、镍(Ni)、铅(Pb)和锌(Zn)8种重金属含量,根系土样品还分析了各重金属的形态(Cr未测)。研究发现:土壤重金属含量较高,表层土壤中8种重金属含量平均值远超过全国表层土壤背景值,Cd元素含量超出全国表层土壤背景值近7倍,土壤以酸性土为主,从重金属全量来看,研究区生态风险很高;土壤重金属As、Cu、Hg、Ni、Pb和Zn多以强有机结合态和残渣态形式存在,生物有效性较低,Cd的有效态组分较高。基于土壤重金属形态的生态风险统计结果显示,研究区生态风险主要是由Cd引起的,需要加强这部分土地的监管。在土壤-玉米系统中,生物富集系数和转运系数均较低,重金属难以在玉米中富集,玉米籽实中重金属含量不超标农作物重金属等级评价为安全级。本结果为进一步研究重金属元素在岩-土-气-生介质间迁移转化规律,融合地质学、土壤学和生物学分析建立统一标准,科学评价生态环境风险和健康风险奠定了理论基础。


关键词: 土壤重金属,  生态风险评价,  形态,  土壤污染,  高背景区 
Fig. 1 Sampling points and geological sketch map in the study area

地累积指数

Geoaccumulation index

污染程度

Pollution level

Igeo≤0无污染
0<Igeo≤1轻度污染
1<Igeo≤2中度污染
2<Igeo≤3中度-严重污染
3<Igeo≤4严重污染
4<Igeo≤5严重-极严重污染
Igeo>5极严重污染
Table 1 Classification criteria of geoaccumulation index (Igeo)

统计参数

Statistical parameter

pHAsCdCrCuHgNiPbZn
最小值 Min.4.311.40.1841.430.80.0226.715.285.0
最大值 Max.8.2381.66.87503.0308.01.15151.0152.0475.0
平均值 Mean6.019.51.16218.9114.90.1474.632.6157.7
中位值 Median5.687.61.00197.0108.00.1371.532.5152.0
变异系数 Coefficient of variation/%208663474261293023

贵州省表层土壤背景值[25]

Topsoil background values of Guizhou[25]

6.2020.00.6695.932.00.1139.135.299.5

中国表层土壤背景值[28]

Topsoil background values of China[28]

7.679.10.1563.023.00.0526.025.067.0

表层土壤筛选值[10]

Screening values for topsoil[10]

<6.540.00.22150.050.01.8070.090.0200.0
6.5~7.530.00.30200.0100.02.40100.0120.0250.0
>7.525.00.60250.0100.03.40190.0170.0300.0
Table 2 Statistics of heavy metal contents in the topsoil samples
Fig. 2 Chemical forms of heavy metals in the soil samples

区域

Region

形态

Form

AsCdCrCuHgNiPbZn

研究区

Study area

F1+F20.4140.660.502.261.072.011.52
F3+F4+F528.6439.4718.6422.608.3842.0313.87
F6+F770.9519.8780.8675.1490.5555.9784.61

云南宣威市[18]

Xuanwei City, Yunnan[18]

F1+F2+F30.0838.411.450.083.270.780.110.12
F4+F5+F63.1734.7917.202.8742.0510.193.764.11
F796.7526.8081.3597.1354.6889.0396.1395.77

广西横县[19]

Hengxian County, Guangxi[19]

F1+F2+F31.1220.990.174.101.910.805.701.17
F4+F5+F66.5620.905.6912.9044.049.8112.905.47
F792.3258.1194.1483.0054.0589.3981.4093.36
Table 3 Percentage of different chemical forms of heavy metals in the soil samples

元素

Element

根 Root茎 Stem叶 Leaf籽实 Grain

限量值[30]

Limited

value[30]

最小值

Min.

最大值Max.

平均值

Mean

最小值

Min.

最大值Max.

平均值

Mean

最小值

Min.

最大值Max.

平均值

Mean

最小值

Min.

最大值Max.

平均值

Mean

As0.171.340.490.040.190.070.100.260.180.010.040.040.5
Cd217.361 699.00839.6836.60468.75185.40108.141837.63599.785.4547.3114.77100.0
Cr4.4475.0617.650.665.231.431.007.063.120.100.170.131.0
Cu11.68347.868.355.3269.3915.416.0657.3918.821.383.452.10
Hg12.2552.4021.3310.9814.8512.659.3035.4518.980.502.011.3020.0
Ni1.5426.306.910.291.980.600.792.311.440.060.290.13
Pb0.7514.002.880.142.530.430.835.242.570.050.120.080.2
Zn9.2040.6120.385.3057.3514.4811.4242.9922.8911.5847.0520.46
Table 4 Descriptive statistics of heavy metal contents in maize organs collected from the study area

元素

Element

Igeo≤00<Igeo≤11<Igeo≤22<Igeo≤3

样品数量

Sample

quantity

比例

Percentage/%

样品数量

Sample

quantity

比例

Percentage/%

样品数量

Sample

quantity

比例

Percentage/%

样品数量Sample

quantity

比例

Percentage/%

As30398.0641.2920.65
Cd11838.1915650.49299.3961.94
Cr8828.4813844.668326.86
Cu92.919530.7417757.28289.06
Hg23074.437122.9882.59
Ni5517.8024478.96103.24
Pb30297.7372.27
Zn6621.3624177.9920.65
Table 5 Class distribution of Igeo for heavy metals in the topsoils
Fig. 3 Classification criteria of ecological risks of soil heavy metal speciations[30]

元素

Element

等级1

Class 1

等级2

Class 2

等级3

Class 3

等级4

Class 4

样品数量

Sample

quantity

比例

Percentage/%

样品数量

Sample

quantity

比例

Percentage/%

样品数量

Sample

quantity

比例

Percentage/%

样品数量

Sample

quantity

比例

Percentage/%

生态风险评价

Ecological risk assessment

004012.9413242.7213744.34
As309100000000
Cd004012.9413142.4013844.66
Cu309100000000
Hg309100000000
Ni309100000000
Pb30699.0320.650010.32
Zn309100000000
Table 6 Class distribution of heavy metal speciation in the topsoils
Fig. 4 Spatial distribution of comprehensive ecological risks of heavy metal speciations in the study area

元素

Element

生物富集系数 Bioconcentration factor转运系数 Translocation factor

最小值

Min.

最大值

Max.

平均值

Mean

标准偏差

Standard deviation

最小值

Min.

最大值

Max.

平均值

Mean

标准偏差

Standard deviation

As0.030.220.080.050.290.960.650.17
Hg0.090.350.170.070.040.160.080.04
Cr0.020.540.090.120.020.240.120.06
Ni0.020.400.090.090.070.610.260.18
Cu0.074.860.701.080.040.560.200.12
Zn0.050.260.120.050.544.202.031.07
Cd0.000.030.010.010.010.380.100.08
Pb0.020.370.090.090.030.520.220.12
Table 7 Descriptive statistics of the BCF and TF of heavy metals in the study area
[1]   DROBNIK T , GREINER L , KELLER A , et al . Soil quality indicators: from soil functions to ecosystem services[J]. Ecological Indicators, 2018, 94: 151-169. DOI:10.1016/j.ecolind.2018.06.052
doi: 10.1016/j.ecolind.2018.06.052
[2]   LIANG J , FENG C T , ZENG G M , et al . Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China[J]. Environmental Pollution, 2017, 225: 681-690. DOI:10.1016/j.envpol.2017.03.057
doi: 10.1016/j.envpol.2017.03.057
[3]   MWESIGYE A R , YOUNG S D , BAILEY E H , et al . Population exposure to trace elements in the Kilembe copper mine area, Western Uganda: a pilot study[J]. Science of the Total Environment, 2016, 573: 366-375. DOI:10.1016/j.scitotenv.2016.08.125
doi: 10.1016/j.scitotenv.2016.08.125
[4]   PENG J Y , LI F X , ZHANG J Q , et al . Comprehensive assessment of heavy metals pollution of farmland soil and crops in Jilin Province[J]. Environmental Geochemistry and Health, 2020, 42: 4369-4383. DOI:10.1007/s10653-019-00416-1
doi: 10.1007/s10653-019-00416-1
[5]   PENG M , ZHAO C D , MA H H , et al . Heavy metal and Pb isotopic compositions of soil and maize from a major agricultural area in Northeast China: contamination assessment and source apportionment[J]. Journal of Geochemical Exploration, 2020, 208: 106403. DOI:10.1016/j.gexplo.2019.106403
doi: 10.1016/j.gexplo.2019.106403
[6]   RAI P K, LEE S S , ZHANG M , et al . Heavy metals in food crops: health risks, fate, mechanisms, and management[J]. Environment International, 2019, 125: 365-385. DOI:10.1016/j.envint.2019.01.067
doi: 10.1016/j.envint.2019.01.067
[7]   QIN G W , NIU Z D , YU J D , et al . Soil heavy metal pollution and food safety in China: effects, sources and removing technology[J]. Chemosphere, 2021, 267: 129205. DOI:10.1016/j.chemosphere.2020.129205
doi: 10.1016/j.chemosphere.2020.129205
[8]   CHEN Z K , MUHAMMAD I , ZHANG Y X , et al . Transfer of heavy metals in fruits and vegetables grown in greenhouse cultivation systems and their health risks in Northwest China[J]. Science of the Total Environment, 2021, 766: 142663. DOI:10.1016/j.scitotenv.2020.142663
doi: 10.1016/j.scitotenv.2020.142663
[9]   SAFARI Y , DELAVAR M A , ZHANG C , et al . Assessing cadmium risk in wheat grain using soil threshold values[J]. International Journal of Environmental Science and Technology, 2018, 15(4): 887-894. DOI:10.1007/s13762-017-1422-z
doi: 10.1007/s13762-017-1422-z
[10]   生态环境部 . 土壤环境质量 农用地土壤污染风险管控标准: [S].北京:中国环境出版集团,2018. DOI:10.3969/j.issn.1004-5538.2021.01.001
Ministry of Ecology and Environment of the People’s Republic of China . Soil Environmental Quality: Risk Control Standard for Soil Contamination of Agricultural Land: GB 15618—2018 [S]. Beijing: China Environmental Publishing Group, 2018. (in Chinese)
doi: 10.3969/j.issn.1004-5538.2021.01.001
[11]   LI M , XI X H , XIAO G , et al . National multipurpose regional geochemical survey in China[J]. Journal of Geochemical Exploration, 2014, 139: 21-30. DOI:10.1016/j.gexplo.2013.06.002
doi: 10.1016/j.gexplo.2013.06.002
[12]   李括,彭敏,赵传冬,等 .全国土地质量地球化学调查二十年[J].地学前缘,2019,26(6):128-158. DOI:10.13745/j.esf.sf.2019.8.25
LI K , PENG M , ZHAO C D , et al . Vicennial implementation of geochemical survey of land quality in China[J]. Earth Science Frontiers, 2019, 26(6): 128-158. (in Chinese with English abstract)
doi: 10.13745/j.esf.sf.2019.8.25
[13]   CHEN H Y , TENG Y G , LU S J , et al . Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015, 512/513: 143-153. DOI:10.1016/j.scitotenv.2015.01.025
doi: 10.1016/j.scitotenv.2015.01.025
[14]   TENG Y G , WU J , LU S J , et al . Soil and soil environmental quality monitoring in China: a review[J]. Environment International, 2014, 69: 177-199. DOI:10.1016/j.envint.2014.04.014
doi: 10.1016/j.envint.2014.04.014
[15]   TENG Y G , NI S J , WANG J S , et al . A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area, China[J]. Journal of Geochemical Exploration, 2010, 104(3): 118-127. DOI:10.1016/j.gexplo.2010.01.006
doi: 10.1016/j.gexplo.2010.01.006
[16]   中国地质调查局 .中国耕地地球化学调查报告[R].2015. http://www.cgs.gov.cn/upload/201506/20150626/gdbg.pdf
China Geological Survey . Report on the Geochemical Survey of Cultivated Land in China[R]. 2015. http://www.cgs.gov.cn/upload/201506/20150626/gdbg.pdf. (in Chinese)
[17]   CHEN H P , ZHANG W W , YANG X P , et al . Effective methods to reduce cadmium accumulation in rice grain[J]. Chemosphere, 2018, 207: 699-707. DOI:10.1016/j.chemosphere.2018.05.143
doi: 10.1016/j.chemosphere.2018.05.143
[18]   张富贵,彭敏,王惠艳,等 .基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价[J].环境科学,2020,41(9):4197-4209. DOI:10.13227/j.hjkx.201912241
ZHANG F G , PENG M , WANG H Y , et al . Ecological risk assessment of heavy metals at township scale in the high background of heavy metals, Southwestern, China[J]. Environmental Science, 2020, 41(9): 4197-4209. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201912241
[19]   马宏宏,彭敏,刘飞,等 .广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J].环境科学,2020,41(1):449-459. DOI:10.13227/j.hjkx.201905040
MA H H , PENG M , LIU F , et al . Bioavailability, translocation, and accumulation characteristic of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China[J]. Environmental Science, 2020, 41(1): 449-459. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201905040
[20]   WANG J , SU J W , LI Z G , et al . Source apportionment of heavy metal and their health risks in soil-dustfall-plant system nearby a typical non-ferrous metal mining area of Tongling, Eastern China[J]. Environmental Pollution, 2019, 254(Pt B): 113089. DOI:10.1016/j.envpol.2019.113089
doi: 10.1016/j.envpol.2019.113089
[21]   KONG X Y , LIU T , YU Z H , et al . Heavy metal bioaccumulation in rice from a high geological background area in Guizhou Province, China[J]. Environment Research and Public Health, 2018, 15(10): 2281. DOI:10.3390/ijerph15102281
doi: 10.3390/ijerph15102281
[22]   中国地质调查局 . 生态地球化学评价样品分析技术要求:DD2005—03 [S].2005. . DOI:10.3969/j.issn.1009-282X.2015.03.003
China Geological Survey . Technical Requirements for Analysis of Samples for Ecological Geochemical Evaluation: DD2005—03 [S]. 2005. (in Chinese)
doi: 10.3969/j.issn.1009-282X.2015.03.003
[23]   全国国土资源标准化技术委员会 . 生态地球化学评价动植物样品分析方法: [S].北京:中国标准出版社,2014. DOI:10.7498/aps.63.239201
National Technical Committee (TC93) on Land and Resources of Standardization Administration of China.Analytic Methods for Biologic Samples in Eco-geochemistry Assessment: DZ/T 0253—2014[S]. Beijing: Standards Press of China, 2014. (in Chinese)
doi: 10.7498/aps.63.239201
[24]   MULLER G . Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2: 108-118.
[25]   中国环境监测总站 .中国土壤元素背景值[M].北京:中国环境科学出版社,1990. DOI:10.15385/yb.miracle.1990
China National Environmental Monitoring Centre . Background Values of Soil Elements in China[M]. Beijing: China Environmental Science Press, 1990. (in Chinese)
doi: 10.15385/yb.miracle.1990
[26]   CABRERA F , CLEMENTE L , DíAZ BARRIENTOS E , et al . Heavy metal pollution of soils affected by the Guadiamar toxic flood[J]. Science of the Total Environment, 1999, 242(1/2/3): 117-129. DOI:10.1016/S0048-9697(99)00379-4
doi: 10.1016/S0048-9697(99)00379-4
[27]   REZAPOUR S , ATASHPAZ B , MOGHADDAM S S , et al . Cadmium accumulation, translocation factor, and health risk potential in a wastewater-irrigated soil-wheat (Triticum aestivum L.) system[J]. Chemosphere, 2019, 231: 579-587. DOI:10.1016/j.chemosphere.2019.05.095
doi: 10.1016/j.chemosphere.2019.05.095
[28]   侯青叶,杨忠芳,余涛,等 .中国土壤地球化学参数[M].北京:地质出版社,2020:16-17. DOI:10.1002/smll.v16.17
HOU Q Y , YANG Z F , YU T , et al . Soil Geochemical Parameters in China[M]. Beijing: Geological Publishing House, 2020: 16-17. (in Chinese)
doi: 10.1002/smll.v16.17
[29]   国家卫生健康委员会 . 食品安全国家标准 食品中污染物限量: [S].北京:中国标准出版社,2017. DOI:10.3969/j.issn.1007-8134.2021.01.001
National Health Commission of the People’s Republic of China . Food Safety National Standard: Limit of Contaminants in Food: GB 2762—2017 [S]. Beijing: Standards Press of China, 2017. (in Chinese)
doi: 10.3969/j.issn.1007-8134.2021.01.001
[30]   周国华,孙彬彬,贺灵,等 .珠江下游及浙江基本农田土地质量地球化学调查与应用示范成果报告[R].河北,廊坊:中国地质科学院地球物理地球化学勘查研究所,2019.
ZHOU G H , SUN B B , HE L , et al . Report on the Results of Geochemical Survey and Application Demonstration of Land Quality of Basic Farmland in the Lower Reaches of the Pearl River and Zhejiang[R]. Langfang, Hebei: Chinese Academy of Geological Sciences. Institute of Geophysical and Geochemical Exploration, 2019. (in Chinese)
[1] Xufeng FEI,Zhouqiao REN,Zhaohan LOU,Rui XIAO,Xiaonan Lü. Prediction of soil heavy metal content under spatial scale based on Bayesian maximum entropy and auxiliary information[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 452-459.
[2] Hongmei HU,Tiejun LI,Lu ZHANG,Qing HAO,Xiumei SUN,Yanjian JIN,Zhongzhen YING,Yuanming GUO. Determination and ecological risk assessment of phthalic acid esters in marine sediments[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 365-375.
[3] LI Haiguang, SHI Jiachun*, WU Jianjun. Spatial variability characteristics of soil heavy metals in the cropland and its pollution
source identification around the contaminated sites
[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(3): 325-334.