Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (1): 1-10    DOI: 10.3785/j.issn.1008-9209.2020.03.231
Reviews     
Advances in the study of core fucosylation in mammals
Yinping TIAN(),Wen YI()
Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(1502KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Glycosylation is a major posttranslational modification, which involves in the regulation of important physiological functions. Among them, core fucosylation is an α1, 6-linked fucose to N-glycans, which catalyzes by only one glycosyltransferase. This review will focus on core fucosylation in mammals and the related biological functions. Fucosyltransferase 8 (FUT8) is the sole enzyme responsible for this modification via the addition of L-fucose residue from guanosine diphosphate-β-L-fucose. The crystal structure of human FUT8 provided insight into both catalytic mechanism and substrate recognition. Currently, core fucosylation plays an important role in tumor progression, immune regulation and stem cell differentiation. Moreover, fucose analogues were either the metabolic substitutes or inhibitors of fucosylation. In conclusion, the specific labeling and automatic synthesis of core-fucosylated N-glycans will play an important role in its further study and clinical application.



Key wordsfucose      glycosyltransferase      core fucosylation      tumor      immune      stem cell      fucose analogue     
Received: 23 March 2020      Published: 09 March 2021
CLC:  Q  
Corresponding Authors: Wen YI     E-mail: serven0418@163.com;wyi@zju.edu.cn
Cite this article:

Yinping TIAN,Wen YI. Advances in the study of core fucosylation in mammals. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 1-10.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.03.231     OR     http://www.zjujournals.com/agr/Y2021/V47/I1/1


哺乳动物核心岩藻糖基化研究进展

糖基化是一种常见的翻译后修饰,能够参与重要生理功能的调控。其中,核心岩藻糖基化是只发生在N-聚糖上的α1,6岩藻糖修饰。目前研究发现,只有一种糖基转移酶——岩藻糖基转移酶8(fucosyltransferase 8, FUT8)能催化核心岩藻糖基化。本文重点介绍哺乳动物细胞内的核心岩藻糖基化修饰及其相关的生物学功能。核心岩藻糖基转移酶8以鸟苷二磷酸岩藻糖为糖供体来催化核心岩藻糖形成。人源FUT8蛋白结晶对该酶的催化机制及其底物特异性进行了合理解释。现有研究发现,核心岩藻糖基化在肿瘤进程、免疫调控和干细胞分化中发挥着重要作用。而岩藻糖类似物既可以是代谢标志物,也可以是岩藻糖基化抑制剂。核心岩藻糖基化N-聚糖的特异性标记和全自动合成将对其功能的深入研究和临床应用具有重要意义。


关键词: 岩藻糖,  糖基转移酶,  核心岩藻糖基化,  肿瘤,  免疫,  干细胞,  岩藻糖类似物 
Fig. 1 Glycosylation in mammalian cellsAsn: Asparagine; Ser/Thr: Serine/threonine.
Fig. 2 Biosynthesis pathway of GDP-fucose in mammalian cells
Fig. 3 Representative N-glycans in human cellsA. Four representative N-glycans in human cells; B. Core fucosylation catalyzed by FUT8. Asn: Asparagine.
Fig. 4 Fucose analogue
[1]   PINHO S S, REIS C A. Glycosylation in cancer: mechanisms and clinical implications. Nature Reviews Cancer, 2015,15(9):540-555. DOI:10.1038/nrc3982
doi: 10.1038/nrc3982
[2]   BOND M R, HANOVER J A. A little sugar goes a long way: the cell biology of O-GlcNAc. Journal of Cell Biology, 2015,208(7):869-880. DOI:10.1083/jcb.201501101
doi: 10.1083/jcb.201501101
[3]   TONETTI M, STURLA L, BISSO A, et al. The metabolism of 6-deoxyhexoses in bacterial and animal cells. Biochimie, 1998,80(11):923-931. DOI:10.1016/S0300-9084(00)88889-6
doi: 10.1016/S0300-9084(00)88889-6
[4]   ISHIHARA H, HEATH E C. The metabolism of L-fucose. Ⅳ. The biosynthesis of guanosine diphosphate L-fucose in porcine liver. Journal of Biological Chemistry, 1968,243(6):1110-1115.
[5]   PASTUSZAK I, KETCHUM C, HERMANSON G, et al. pyrophosphorylase GDP-L-fucose. Purification, cloning cDNA, and properties of the enzyme. Journal of Biological Chemistry, 1998,273(46):30165-30174.
[6]   PUGLIELLI L, HIRSCHBERG C B. Reconstitution, identification, and purification of the rat liver golgi membrane GDP-fucose transporter. Journal of Biological Chemistry, 1999,274(50):35596-35600. DOI:10.1074/jbc.274.50.35596
doi: 10.1074/jbc.274.50.35596
[7]   YURCHENCO P D, ATKINSON P H. Equilibration of fucosyl glycoprotein pools in HeLa cells. Biochemistry, 1977,16(5):944-953.
[8]   MARQUARDT T, LUHN K, SRIKRISHNA G, et al. Correction of leukocyte adhesion deficiency type Ⅱ with oral fucose. Blood, 1999,94(12):3976-3985. DOI:10.1006/bcmd.1999.0267
doi: 10.1006/bcmd.1999.0267
[9]   MIYOSHI E, TANIGUCHI N. α6-fucosyltransferase (FUT8)//Handbook of Glycosyltransferases and Related Genes. Tokyo: Springer, 2002:259-263. DOI:10.1007/978-4-431-67877-9_34
doi: 10.1007/978-4-431-67877-9_34
[10]   CALDERON A D, LIU Y P, LI X, et al. Substrate specificity of FUT8 and chemoenzymatic synthesis of core-fucosylated asymmetric N-glycans. Organic & Biomolecular Chemistry, 2016,14(17):4027-4031. DOI:10.1039/c6ob00586a
doi: 10.1039/c6ob00586a
[11]   CRISPIN M, HARVEY D J, CHANG V T, et al. Inhibition of hybrid- and complex-type glycosylation reveals the presence of the GlcNAc transferase Ⅰ-independent fucosylation pathway. Glycobiology, 2006,16(8):748-756. DOI:10.1093/glycob/cwj119
doi: 10.1093/glycob/cwj119
[12]   LIN A I, PHILIPSBERG G A, HALTIWANGER R S. Core fucosylation of high-mannose-type oligosaccharides in GlcNAc transferase Ⅰ-deficient (Lec1) CHO cells. Glyco-biology, 1994,4(6):895-901. DOI:10.1093/glycob/4.6.895
doi: 10.1093/glycob/4.6.895
[13]   YANG Q, ZHANG R S, CAI H, et al. Revisiting the substrate specificity of mammalian alpha 1, 6-fucosyl-transferase reveals that it catalyzes core fucosylation of N-glycans lacking alpha 1, 3-arm GlcNAc. Journal of Biological Chemistry, 2017,292(36):14796-14803. DOI:10.1074/jbc.M117.804070
doi: 10.1074/jbc.M117.804070
[14]   TSENG T H, LIN T W, CHEN C Y, et al. Substrate preference and interplay of fucosyltransferase 8 and N-acetylglucosaminyltransferases. Journal of the American Chemistry Society, 2017,139(28):9431-9434. DOI:10.1021/jacs.7b03729
doi: 10.1021/jacs.7b03729
[15]   IHARA H, IKEDA Y, TOMA S, et al. Crystal structure of mammalian alpha1, 6-fucosyltransferase, FUT8. Glycobiology, 2007,17(5):455-466. DOI:10.1093/glycob/cwl079
doi: 10.1093/glycob/cwl079
[16]   GARCIA-GARCIA A, CEBALLOS-LAITA L, SERNA S, et al. Structural basis for substrate specificity and catalysis of alpha1, 6-fucosyltransferase. Nature Communication, 2020,11(1):973-981. DOI:10.1038/s41467-020-14794-z
doi: 10.1038/s41467-020-14794-z
[17]   KEELEY T S, YANG S Y, LAU E. The diverse contributions of fucose linkages in cancer. Cancers, 2019,11(9):1241-1265. DOI:10.3390/cancers11091241
doi: 10.3390/cancers11091241
[18]   季君,高春芳.α-1,6岩藻糖基转移酶与肿瘤.第二军医大学学报,2011,32(2):209-212. DOI:10.3724/SP.J.1008.2011.00209
JI J, GAO C F. α1, 6-fucosyltransferase and tumor: recent progress. Academic Journal of Second Military Medical University, 2011,32(2):209-212. (in Chinese with English abstract)
doi: 10.3724/SP.J.1008.2011.00209
[19]   SCHNEIDER M, AL-SHAREFFI E, HALTIWANGER R S, et al. Biological functions of fucose in mammals. Glycobiology, 2017,27(7):601-618. DOI:10.1093/glycob/cwx034
doi: 10.1093/glycob/cwx034
[20]   MEHTA A, HERRERA H, BLOCK T M, et al. Glycosylation and liver cancer. Advances in Cancer Research, 2015,126:257-279. DOI:10.1016/bs.acr.2014.11.005
doi: 10.1016/bs.acr.2014.11.005
[21]   SATO Y, NAKATA K, KATO Y, et al. Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein. The New England Journal of Medicine, 1993,328(25):1802-1806.
[22]   CHENG H T, CHANG Y H, CHEN Y Y, et al. AFP-L3 in chronic liver diseases with persistent elevation of alpha-fetoprotein. Journal of the Chinese Medical Association, 2007,70(8):310-317. DOI:10.1016/s1726-4901(08)70011-x
doi: 10.1016/s1726-4901(08)70011-x
[23]   NORTON P A, MEHTA A S. Expression of genes that control core fucosylation in hepatocellular carcinoma: systematic review. World Journal of Gastroenterology, 2019,25(23):2947-2960. DOI:10.3748/wjg.v25.i23.2947
doi: 10.3748/wjg.v25.i23.2947
[24]   SCOTT E, MUNKLEY J. Glycans as biomarkers in prostate cancer. International Journal of Molecular Sciences, 2019,20(6):1389-1408. DOI:10.3390/ijms20061389
doi: 10.3390/ijms20061389
[25]   KYSELOVA Z, MECHREF Y, AL-BATAINEH M M, et al. Alterations in the serum glycome due to metastatic prostate cancer. Journal of Proteome Research, 2007,6(5):1822-1832. DOI:10.1021/pr060664t
doi: 10.1021/pr060664t
[26]   MIYOSHI E, NAKANO M. Fucosylated haptoglobin is a novel marker for pancreatic cancer: detailed analyses of oligosaccharide structures. Proteomics, 2008,8(16):3257-3262. DOI:10.1002/pmic.200800046
doi: 10.1002/pmic.200800046
[27]   AGRAWAL P, FONTANALS-CIRERA B, SOKOLOVA E, et al. A systems biology approach identifies FUT8 as a driver of melanoma metastasis. Cancer Cell, 2017,31(6):804-819. DOI:10.1016/j.ccell.2017.05.007
doi: 10.1016/j.ccell.2017.05.007
[28]   ZHAO Y Y, SATO Y, ISAJI T, et al. Branched N-glycans regulate the biological functions of integrins and cadherins. The FEBS Journal, 2008,275(9):1939-1948. DOI:10.1111/j.1742-4658.2008.06346.x
doi: 10.1111/j
[29]   ZHAO Y Y, ITOH S, WANG X C, et al. Deletion of core fucosylation on α3β1 integrin down-regulates its functions. Journal of Biological Chemistry, 2006,281(50):38343-38350. DOI:10.1074/jbc.M608764200
doi: 10.1074/jbc.M608764200
[30]   CHEN C Y, JAN Y H, JUAN Y H, et al. Fucosyltransferase 8 as a functional regulator of nonsmall cell lung cancer. PNAS, 2013,110(2):630-635. DOI:10.1073/pnas.1220425110
doi: 10.1073/pnas.1220425110
[31]   OSUMI D, TAKAHASHI M, MIYOSHI E, et al. Core fucosylation of E-cadherin enhances cell-cell adhesion in human colon carcinoma WiDr cells. Cancer Science, 2009,100(5):888-995. DOI:10.1111/j.1349-7006.2009.01125.x
doi: 10.1111/j.1349-7006.2009.01125.x
[32]   SONNEVELD M E, SCHOOT C E VAN DER, VIDARSSON G. The elements steering pathogenesis in IgG-mediated alloimmune diseases. Journal of Clinical Immunology, 2016,36():76-81. DOI:10.1007/s10875-016-0253-x
doi: 10.1007/s10875-016-0253-x
[33]   SHIELDS R L, LAI J, KECK R, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRⅢ and antibody-dependent cellular toxicity. Journal of Biological Chemistry, 2002,277(30):26733-26740. DOI:10.1074/jbc.M202069200
doi: 10.1074/jbc.M202069200
[34]   FERRARA C, GRAU S, JAGER C, et al. Unique carbo-hydrate-carbohydrate interactions are required for high affinity binding between FcγRⅢ and antibodies lacking core fucose. PNAS, 2011,108(31):12669-12674. DOI:10.1073/pnas.1108455108
doi: 10.1073/pnas.1108455108
[35]   PEREIRA N A, CHAN K F, LIN P C, et al. The “less-is-more” in therapeutic antibodies: afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. mAbs, 2018,10(5):693-711. DOI:10.1080/19420862.2018.1466767
doi: 10.1080/19420
[36]   BECK A, REICHERT J M. Marketing approval of mogamulizumab: a triumph for glyco-engineering. mAbs, 2012,4(4):419-425. DOI:10.4161/mabs.20996
doi: 10.4161/mabs.20996
[37]   ILLIDGE T, KLEIN C, SEHN L H, et al. Obinutuzumab in hematologic malignancies: lessons learned to date. Cancer Treatment Reviews, 2015,41(9):784-792. DOI:10.1016/j.ctrv.2015.07.003
doi: 10.1016/j.ctrv.2015.07.003
[38]   ASTER R H. Core fucosylation and IgG function in NAIT. Blood, 2014,123(4):463-464. DOI:10.1182/blood-2013-12-539965
doi: 10.1182/blood-2013-12-539965
[39]   KAPUR R, KUSTIAWAN I, VESTRHEIM A, et al. A prominent lack of IgG1-Fc fucosylation of platelet alloantibodies in pregnancy. Blood, 2014,123(4):471-480. DOI:10.1182/blood-2013-09-527978
doi: 10.1182/blood-2013-09-527978
[40]   WANG T T, SEWATANON J, MEMOLI M J, et al. IgG antibodies to dengue enhanced for Fc gamma RⅢA binding determine disease severity. Science, 2017,355(6323):395-399. DOI:10.1126/science.aai8128
doi: 10.1126/science.aai8128
[41]   WANG X C, GU J G, IHARA H, et al. Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. Journal of Biological Chemistry, 2006,281(5):2572-2577. DOI:10.1074/jbc.M510893200
doi: 10.1074/jbc.M510893200
[42]   WANG X C, GU J G, MIYOSHI E, et al. Phenotype changes of Fut8 knockout mouse: Core fucosylation is crucial for the function of growth factor receptor(s). Functional Glycomics, 2006,417:11-22. DOI:10.1016/S0076-6879(06)17002-0
doi: 10.1016/S0076-6879(06)17002-0
[43]   WANG X C, INOUE S, GU J G, et al. Dysregulation of TGF-β1 receptor activation leads to abnormal lung develop-ment and emphysema-like phenotype in core fucose-deficient mice. PNAS, 2005,102(44):15791-15796. DOI:10.1073/pnas.0507375102
doi: 10.1073/pnas.0507375102
[44]   LI L K, SHEN N, WANG N, et al. Inhibiting core fucosylation attenuates glucose-induced peritoneal fibrosis in rats. Kidney International, 2018,93(6):1384-1396. DOI:10.1016/j.kint.2017.12.023
doi: 10
[45]   TAYLOR P R, BROWN G D, REID D M, et al. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. The Journal of Immunology, 2002,169(7):3876-3882. DOI:10.4049/jimmunol.169.7.3876
doi: 10.4049/jimmunol.169.7.3876
[46]   MANABE Y, MARCHETTI R, TAKAKURA Y, et al. The core fucose on an IgG antibody is an endogenous ligand of dectin-1. Angewandte Chemie (International Edition), 2019,58(51):18697-18702. DOI:10.1002/anie.201911875
doi: 10.1002/anie.201911875
[47]   KARACALI S. Human embryonic stem cell N-glycan features relevant to pluripotency. Turkish Journal of Biology, 2016,40(5):1050-1058. DOI:10.3906/biy-1509-57
doi: 10.3906/biy-1509-57
[48]   AN H J, GIP P, KIM J, et al. Extensive determination of glycan heterogeneity reveals an unusual abundance of high mannose glycans in enriched plasma membranes of human embryonic stem cells. Molecular & Cellular Proteomics, 2012,11(4):M111.010660. DOI:10.1074/mcp.M111.010660
doi: 10.1074/mcp.M111.010660
[49]   HASEHIRA K, TATENO H, ONUMA Y, et al. Structural and quantitative evidence for dynamic glycome shift on production of induced pluripotent stem cells. Molecular & Cellular Proteomics, 2012,11(12):1913-1923. DOI:10.1074/mcp.M112.020586
doi: 10.1074/mcp.M112.020586
[50]   SATOMAA T, HEISKANEN A, MIKKOLA M, et al. The N-glycome of human embryonic stem cells. BMC Cell Biology, 2009,10(42):1-18. DOI:10.1186/1471-2121-10-42
doi: 10.1186/1471-2121-10-42
[51]   TATENO H, TOYOTA M, SAITO S, et al. Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. Journal of Biological Chemistry, 2011,286(23):20345-20353. DOI:10.1074/jbc.M111.231274
doi: 10.1074/jbc.M111.231274
[52]   SRIVASTAVA G, KAUR K J, HINDSGAUL O, et al. Enzymatic transfer of a preassembled trisaccharide antigen to cell surfaces using a fucosyltransferase. Journal of Bio-logical Chemistry, 1992,267(31):22356-22361. DOI:10.1016/S0022-5193(05)80771-4
doi: 10.1016/S0022-5193(05)80771-4
[53]   NING X H, GUO J, WOLFERT M A, et al. Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. Angewandte Chemie (International Edition), 2008,47(12):2253-2255. DOI:10.1002/anie.200705456
doi: 10.1002/anie.200705456
[54]   LAUGHLIN S T, BERTOZZI C R. In vivo imaging of caenorhabditis elegans glycans. ACS Chemical Biology, 2009,4(12):1068-1072. DOI:10.1021/cb900254y
doi: 10.1021/cb900254y
[55]   LAUGHLIN S T, BASKIN J M, AMACHER S L, et al. In vivo imaging of membrane-associated glycans in developing zebrafish. Science, 2008,320(5876):664-667. DOI:10.1126/science.1155106
doi: 10.1126/science.1155106
[56]   HSU T L, HANSON S R, KISHIKAWA K, et al. Alkynyl sugar analogs for the labeling and visualization of glycocon-jugates in cells. PNAS, 2007,104(8):2614-2619. DOI:10.1073/pnas.0611307104
doi: 10.1073/pnas.0611307104
[57]   SAWA M, HSU T L, ITOH T, et al. Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. PNAS, 2006,103(33):12371-12376. DOI:10.1073/pnas.0605418103
doi: 10.1073/pnas.0605418103
[58]   YI W, LIU X W, LI Y H, et al. Remodeling bacterial polysaccharides by metabolic pathway engineering. PNAS, 2009,106(11):4207-4212. DOI:10.1073/pnas.0812432106
doi: 10.1073/pnas.0812432106
[59]   OKELEY N M, TOKI B E, ZHANG X Q, et al. Metabolic engineering of monoclonal antibody carbohydrates for antibody-drug conjugation. Bioconjugate Chemistry, 2013,24(10):1650-1655. DOI:10.1021/bc4002695
doi: 10.1021/bc4002695
[60]   KIZUKA Y, FUNAYAMA S, SHOGOMORI H, et al. High-sensitivity and low-toxicity fucose probe for glycan imaging and biomarker discovery. Cell Chemical Biology, 2016,23(7):782-792. DOI:10.1016/j.chembiol.2016.06.010
doi: 10.1016/j.chembiol.2016.06.010
[61]   KIZUKA Y, NAKANO M, YAMAGUCHI Y, et al. An alkynyl-fucose halts hepatoma cell migration and invasion by inhibiting GDP-fucose-synthesizing enzyme FX, TSTA3. Cell Chemical Biology, 2017,24(12):1467-1478. DOI:10.1016/j.chembiol.2017.08.023
doi: 10.1016/j.chembiol.2017.08.023
[62]   BURKART M D, VINCENT S P, DUFFELS A, et al. Chemo-enzymatic synthesis of fluorinated sugar nucleotide: useful mechanistic probes for glycosyltransferases. Bioorganic & Medicinal Chemistry, 2000,8(8):1937-1946. DOI:10.1016/S0968-0896(00)00139-5
doi: 10.1016/S0968-0896(00)00139-5
[63]   OKELEY N M, ALLEY S C, ANDERSON M E, et al. Development of orally active inhibitors of protein and cellular fucosylation. PNAS, 2013,110(14):5404-5409. DOI:10.1073/pnas.1222263110
doi: 10.1073/pnas.1222263110
[64]   RILLAHAN C D, ANTONOPOULOS A, LEFORT C T, et al. Global metabolic inhibitors of sialyl- and fucosyl-transferases remodel the glycome. Nature Chemical Biology, 2012,8(7):661-668. DOI:10.1038/nchembio.999
doi: 10.1038/nchembio.999
[65]   ALLEN J G, MUJACIC M, FROHN M J, et al. Facile modulation of antibody fucosylation with small molecule fucostatin inhibitors and cocrystal structure with GDP-mannose 4, 6-dehydratase. ACS Chemical Biology, 2016,11(10):2734-2743. DOI:10.1021/acschembio.6b00460
doi: 10.1021/acschembio.6b00460
[66]   ZENG W F, LIU M Q, ZHANG Y, et al. pGlyco: a pipeline for the identification of intact N-glycopeptides by using HCD- and CID-MS/MS and MS3. Scientific Reports, 2016,6(1):25102. DOI:10.1038/srep25102
doi: 10.1038/srep25102
[67]   HWANG H, JEONG H K, LEE H K, et al. Machine learning classifies core and outer fucosylation of N-glycoproteins using mass spectrometry. Scientific Reports, 2020,10(1):318. DOI:10.1038/s41598-019-57274-1
doi: 10.1038/s41598-019-57274-1
[68]   CALDERON A D, LI L, WANG P G. FUT8: from biochemistry to synthesis of core-fucosylated N-glycans. Pure and Applied Chemistry, 2017,89(7):911-920. DOI:10.1515/pac-2016-0923
doi: 10.1515/pac-2016-0923
[69]   CALDERON A D, ZHOU J, GUAN W Y, et al. An enzymatic strategy to asymmetrically branched N-glycans. Organic & Biomolecular Chemistry, 2017,15(35):7258-7262. DOI:10.1039/C7OB01765K
doi: 10.1039/C7OB01765K
[70]   HAHM H S, SCHLEGEL M K, HUREVICH M, et al. Automated glycan assembly using the Glyconeer2.1 synthesizer. PNAS, 2017,114(17):E3385-E3389. DOI:10.1073/pnas.1700141114
doi: 10.1073/pnas.1700141114
[71]   ZHANG J B, CHEN C C, GADI M R, et al. Frontispiece: machine-driven enzymatic oligosaccharide synthesis by using a peptide synthesizer. Angewandte Chemie (International Edition), 2018,57(51):16638-16642. DOI:10.1002/anie.201885161
doi: 10.1002/anie.201885161
[72]   LI T H, LIU L, WEI N, et al. An automated platform for the enzyme-mediated assembly of complex oligosaccharides. Nature Chemistry, 2019,11(3):229-236. DOI:10.1038/s41557-019-0219-8
doi: 10.1038/s41557-019-0219-8
[1] Hangye ZHAO,Chen XIA,Puming HE,Youying TU. Effects of tea polyphenols on anti-inflammation and promotion of wound healing and its mechanisms[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 118-126.
[2] Lianfu CHEN,Ning REN,Yi Charlie CHEN,Youying TU. Effect of saponins extracted from tea (Camellia sinensis) flower on the proliferation of ovarian cancer stem like cells and its mechanism[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 667-676.
[3] Xiaolian CHEN,Wenjing SONG,Quanyong ZHOU,Qiongli SONG,Zhiheng ZOU,Linxiu LIU,Lizhen HU,Qipeng WEI,Jingsheng YAN, Dalieya?AHEMAITI. Effects of Callicarpa kwangtungensis Chun. extract on reproductive performance, immune function, antioxidant capacity and intestinal flora of sows[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 360-368.
[4] Zhixin YI,Yilong JIANG,Qiuhong WANG,Qilin XU,Xinxing WANG,Guilin MO,Dongmei JIANG,Bo KANG. Effects of spermine on immune organ indexes and expression levels of genes related to immune factors in geese[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 596-602.
[5] Zhigang WANG,Chao XU,Xiahui LI,Shiyu LIN,Xiaxia DU,Chonglin RAN,Gang SHU. Effects of Moringa oleifera leaf powder on production performance, immune function and antioxidant capacity of quails[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 243-250.
[6] KONG Dedong, ZHAO Yueling, WANG Yuefei, XU Ping. Review on inhibition mechanism of tea polyphenols against tumor immune escape[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 539-548.
[7] CAO Zhuoyang, Lü Qinghua, XIE Yuan, FANG Ping, WANG Rongcai, YE Dafeng. Effects of zymotic fluid of Cordyceps Sinensis mycelium on the immune function of Rex Rabl rabbit[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 638-642.
[8] XU Chao, YANG Xiaolian, YUE Min, ZHU Shu. Progress on bacteria promoting enterovirus infection and its mechanism[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 140-148.
[9] LUO Jun, LIU Hehe, LIU Junying, ZHANG Tao, WANG Yushi, HAN Chunchun . Molecular cloning, bioinformatics of the duck RIG-1 promoter region, and its differential expression profiles in embryo stages[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 104-112.
[10] CHEN Siyuan, HU Ji’an. Progress and application of salinomycin-induced cell autophagy in anti-cancer treatment[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(6): 694-702.
[11] KANG Yongbo, KONG Xiangyang, ZHANG Xiaofang, GUO Liqiong, SUN Junhong. Progress in research on interaction of intestinal microbiota and immunity[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(3): 282-288.
[12] XIANG Yuyong, ZHANG Yun, YIN Peifeng, ZHU Ping. Variation of hemocytes of Heterolocha jinyinhuaphaga Chu larva infected by Escherichia coli.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 163-168.
[13] Hua Xueming, Wang Shizhong, Chen Yaoqin, Zhong Guofang, Zhou Hongqi. Effects of phytase on vertebral shapes and non-specific immune related enzymes activities in channel catfish (Ictalurus punctatus)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(1): 94-102.
[14] YE Yue, YE Ming, ZHANG Rong, CAI Zhenyu, HU Shiming, LIU Chaixia. Effects of Bacillus preparation on carcass performance and intestinal microflora of Avian broiler chicken.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 305-310.