Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (5): 551-561    DOI: 10.3785/j.issn.1008-9209.2019.11.291
Crop cultivation & physiology     
Identification of main agronomic characteristics and screening of elite germplasm resources of the cotton after rape cultivation in the Yangzte River Basin
Yanfeng DENG(),Shuiping XIAO,Shaoqun YANG,Xinwen LIU,Xingsheng KE,Tao WANG(),Xiu YANG()
Cotton Research Institute of Jiangxi Province/Poyang Lake Comprehensive Test Station of National Cotton Industrial Technology System, Jiujiang 332105, Jiangxi, China
Download: HTML   HTML (   PDF(1575KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to expand the germplasm resource bank of cotton after rape cultivation in the Yangtze River Basin, screen out excellent germplasm suitable for hybrid parents, and improve the efficiency of cotton breeding, 11 main agronomic traits of 72 upland cotton materials introduced were analyzed with the methods of variability, correlation analysis, principal component analysis and clustering analysis by statistical software SAS V8. The results showed that, the 72 Gossypium hirsutum germplasm resources had rich genetic diversity, and the variation coefficients of characters among 72 materials ranged from 1.15% to 30.31%. The variation coefficient of boll number per plant was the largest, was 30.31%. The correlation analysis showed that the growth period was significantly and positively correlated with plant type traits. The plant height was extremely significantly and positively correlated with the boll mass. The number of fruit branches per plant was extremely significantly and positively correlated with the boll number per plant, and significantly and negatively correlated with the boll mass. The lint percentage and boll mass were significantly and negatively correlated with some quality traits. The principal component analysis showed that the cumulative contribution rate of the first four principal components was 73.98%, which including most information of 11 traits. Clustering analysis showed that the 72 cotton materials were classified into six groups. Group Ⅰ belonged to high-quality materials, and group Ⅱ belonged to high-yield materials. Group Ⅴ belonged to high-yield and high-quality materials, which could be used in breeding. Two high-quality cotton materials and six high-yield cotton materials were screened out with the method of comprehensive evaluation, which would be used to cultivate new materials with combination of yield and quality traits.



Key wordscotton after rape cultivation      agronomic traits      germplasm resources      identification      screening     
Received: 29 November 2019      Published: 19 November 2020
CLC:  S 562  
Corresponding Authors: Tao WANG,Xiu YANG     E-mail: 1406349237@qq.com;jxmhwangtao@126.com;yangxiu0117@163.com
Cite this article:

Yanfeng DENG,Shuiping XIAO,Shaoqun YANG,Xinwen LIU,Xingsheng KE,Tao WANG,Xiu YANG. Identification of main agronomic characteristics and screening of elite germplasm resources of the cotton after rape cultivation in the Yangzte River Basin. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 551-561.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.11.291     OR     http://www.zjujournals.com/agr/Y2020/V46/I5/551


长江流域油后棉主要农艺性状的鉴定与优异种质筛选

为扩大长江流域油后棉种质资源库,筛选出符合杂交亲本的优异种质,提高棉花育种效率,以引进的72份陆地棉材料为研究对象,应用统计软件SAS V8等对其11个主要农艺性状进行变异性、相关性、主成分和聚类分析。结果表明:72份陆地棉种质资源具有丰富的遗传多样性,材料间的性状变异系数在1.15%~30.31%之间,变幅较大,其中单株成铃数变异系数最大,为30.31%。相关性分析结果表明:生育期与株形性状均呈极显著正相关,株高与铃质量呈极显著正相关,单株果枝数与单株成铃数呈极显著正相关,且与铃质量呈显著负相关,衣分和铃质量均与部分品质性状呈显著负相关。主成分分析结果表明:前4个主成分累计贡献率达73.98%,包含了11个性状的绝大部分信息。聚类分析表明,72份参试种质可分为6类,其中第Ⅰ类群属于优质材料,第Ⅱ类群属于高产材料,第Ⅴ类群属于高产优质材料,育种中可加以重点应用。通过综合评价共筛选出优质材料2份,高产材料6份,在育种工作中可结合品质与产量性状之间的关系,利用优势亲本培育新品种。


关键词: 油后棉,  农艺性状,  种质资源,  鉴定,  筛选 

编号

No.

材料名称

Name of material

编号

No.

材料名称

Name of material

编号

No.

材料名称

Name of material

编号

No.

材料名称

Name of material

117ZX170119冀省2893717中J01025517ZY5
217JXZM160120中5213817川109-15617ZY55
317ZH122111巴33917中JL165717ZY14
4国棉5号22冀省优8514017中J57605817ZY18
5冀省03H1723P092324117中J09585917ZY53
6冀省09H5224泗抗1号4217中J07106017ZY31
7中棉所5825中棉所424317中ZM026117ZY48
8芽黄910126中远91174417中J07126217ZY12
9冀省1727浙农远305645赣棉19号6317ZY36
1017ZX170328LiheFCHY33074617中J51986417ZY23
11冀省194529豫棉11号4717中J96686517ZY51
12贝尔斯诺30萃棉9号4817中M6686617ZY73
13中棉所6431苏远72354917中M97026717ZY37
14M14070232冀丰9115017ZH856817ZY2
15冀A-6-7(33系)33日辉棉6号5117ZH866917ZY35
16G51-134鄂棉9号5217ZH877017ZY6
17萧县133长绒35L142-95317ZY337117ZY38
18山农3号3617中J19105417ZY5672MJF708
Table 1 Tested materials

参量

Parameter

生育期

Growth

period/d

表型性状 Phenotypic trait产量性状 Yield trait

株高

Plant height/cm

单株果枝数

Number of fruit

branches per plant

单株成铃数

Number of boll

per plant

衣分

Lint

percentage/%

铃质量

Boll mass/g

最大值 Maximum value115.00136.8023.2051.2045.375.60
最小值 Minimum value83.0092.0013.0014.0027.962.90
变异幅度 Variation range32.0044.8010.2037.2017.412.70
平均数 Mean103.70109.3617.9628.4036.864.34

变异系数

Coefficient of variation/%

8.517.8512.6330.318.4910.35

标准差

Standard deviation

8.838.582.278.613.130.45

参量

Parameter

品质性状 Quality trait

上半部平均长度

Average length of

upper half part/mm

长度整齐度指数

Uniformity index

of length/%

断裂比强度

Breaking

tenacity/(cN/tex)

马克隆值

Micronaire

value

断裂伸长率

Breaking elongation rate/%

最大值 Maximum value34.5087.7039.406.307.10
最小值 Minimum value25.5082.3026.504.206.60
变异幅度 Variation range9.005.4012.902.100.50
平均数 Mean28.9585.3132.185.406.81

变异系数

Coefficient of variation/%

5.961.379.167.291.15

标准差

Standard deviation

1.731.172.950.390.08
Table 2 Variation of main agronomic and quality traits of tested materials

性状

Trait

生育期

Growth period

株高

Plant height

单株果枝数

Number of fruit

branches per plant

单株成铃数

Number of boll

per plant

衣分

Lint percentage

铃质量

Boll mass

生育期 Growth period1.000 00
株高 Plant height0.387 99**1.000 00

单株果枝数

Number of fruit branches per plant

0.409 67**0.092 211.000 00
单株成铃数 Number of boll per plant0.729 26**0.150 500.496 07**1.000 00
衣分 Lint percentage-0.171 330.013 44-0.086 19-0.130 051.000 00
铃质量 Boll mass0.175 390.434 48**-0.279 65*-0.342 31**0.037 071.000 00
Table 3 Correlation analysis among growth period, plant type traits and yield traits of tested materials

性状

Trait

单株成铃数

Number of boll per plant

衣分

Lint percentage

铃质量

Boll mass

上半部平均长度 Average length of upper half part-0.103 45-0.308 36**-0.188 75
长度整齐度指数 Uniformity index of length0.006 77-0.094 84-0.288 90*
断裂比强度 Breaking tenacity-0.191 44-0.373 30**-0.290 57*
马克隆值 Micronaire value-0.129 620.387 47**0.035 44
断裂伸长率 Breaking elongation rate-0.026 19-0.108 75-0.246 41*
Table 4 Correlation analysis between yield traits and quality traits of tested materials

因子

Factor

特征值

Eigenvalue

贡献率

Contribution

rate

累积贡献率

Cumulative

contribution rate

因子1 Factor 12.989 80.271 80.271 8
因子2 Factor 22.379 20.216 30.488 1
因子3 Factor 31.622 10.147 50.635 6
因子4 Factor 41.146 60.104 20.739 8
因子5 Factor50.748 90.068 10.807 9
因子6 Factor 60.691 50.062 90.870 7
Table 5 Eigenvalue and contribution rate of principal component analysis of tested materials

性状

Trait

因子1

Factor 1

因子2

Factor 2

因子3

Factor 3

因子4

Factor 4

生育期

Growth period

-0.1310.571-0.0090.117

株高

Plant height

-0.1600.274-0.3300.543

单株果枝数

Number of fruit branches

per plant

0.1320.3830.3790.258

单株成铃数

Number of boll per plant

-0.0030.5530.272-0.143

衣分

Lint percentage

-0.239-0.2240.3170.259

铃质量

Boll mass

-0.290-0.051-0.4820.412

上半部平均长度

Average length of upper half part

0.4860.003-0.1940.147

断裂比强度

Breaking tenacity

0.4930.072-0.1970.048

马克隆值

Micronaire value

-0.161-0.2550.4660.417

断裂伸长率

Breaking elongation rate

0.448-0.1470.0870.301

长度整齐度指数

Uniformity index of length

0.306-0.0350.1970.280
Table 6 Score for principal component analysis of tested materials
Fig. 1 Clustering analysis map of the 72 materials

类群

Group

统计参数

Statistic

parameter

生育期

Growth

period/d

株高 Plant

height/

cm

单株

果枝数

Number

of fruit

branches

per plant

单株

成铃数

Number

of boll

per plant

衣分

Lint

percentage/%

铃质量

Boll mass

上半部

平均长度

Average

length of

upper half

part/mm

断裂比

强度

Breaking

tenacity/

(cN/tex)

马克隆值

Micronaire

value

断裂伸长率

Breaking

elongation

rate/%

长度整齐

度指数

Uniformity

index of

length/%

平均数

Mean

113.50131.0019.8048.2035.433.9529.3034.754.806.8085.80

最大值

Maximum

value

115.00135.6020.4051.2037.984.2029.9035.405.106.8085.70

最小值

Minimum

value

112.00126.4019.2045.2032.873.7028.7034.104.506.8085.30

标准差

Standard

deviation

2.126.510.854.243.610.350.850.920.4200.28

变异系数

Coefficient

of variation/%

1.874.974.298.8010.208.952.902.668.8400.33

平均数

Mean

113.00127.6719.1329.4036.854.9028.2031.005.486.7784.93

最大值

Maximum

value

114.00136.8021.6033.2043.315.6029.0032.905.806.8086.50

最小值

Minimum

value

112.00122.0016.8025.2033.624.0026.8028.705.006.7083.00

标准差

Standard

deviation

0.895.371.833.073.360.580.871.450.320.051.20

变异系数

Coefficient

of variation/%

0.794.209.5710.459.1111.823.104.685.810.761.42

平均数

Mean

112.42109.6218.8133.4436.544.5128.5731.235.376.7684.85

最大值

Maximum

value

115.00117.4022.0042.2045.375.3031.4036.206.206.9087.10

最小值

Minimum

value

107.00103.6013.8025.2027.964.0026.0026.804.206.6082.30

标准差

Standard

deviation

1.803.782.094.563.490.321.572.940.450.081.31

变异系数

Coefficient

of variation/%

1.613.4511.1213.649.567.115.519.418.331.131.55

平均数

Mean

110.13102.3618.4840.3636.654.0428.4331.815.306.8185.83

最大值

Maximum

value

114.00105.2020.4045.0039.814.4030.5036.405.806.9087.70

最小值

Minimum

value

103.0092.8015.2033.6031.843.8025.5028.004.206.7083.90

标准差

Standard

deviation

4.094.131.723.892.690.191.663.080.470.081.18

变异系数

Coefficient

of variation/%

3.714.049.319.647.334.765.839.698.911.221.37

平均数

Mean

95.83110.0516.4020.0037.774.4629.1932.505.476.8285.47

最大值

Maximum

value

100.00115.0018.4027.0044.335.0032.0038.006.206.9087.20

最小值

Minimum

value

89.00107.0013.8014.0031.953.9027.2026.504.806.7083.90

标准差

Standard

deviation

3.232.311.393.763.180.281.292.900.330.060.94

变异系数

Coefficient

of variation/%

3.372.108.4718.828.426.194.438.926.100.851.10

平均数

Mean

95.21100.7118.3225.2736.123.9429.6433.315.466.8685.52

最大值

Maximum

value

100.00106.0023.2030.2040.724.5034.5039.406.307.1087.40

最小值

Minimum

value

83.0092.0013.0017.2030.172.9025.7029.904.906.7083.50

标准差

Standard

deviation

4.153.603.004.202.780.462.633.270.370.091.29

变异系数

Coefficient

of variation/%

4.363.5816.3716.607.7011.658.899.836.681.371.50
Table 7 Phenotypic performance of different groups
[1]   高伟,张西岭.长江流域棉花生产现状及“十三五”发展建议. 中国棉花,2016,43(1):3-7. DOI:10.11963/issn.1000-632X201601002
GAO W, ZHANG X L. Current situation of cotton production and suggestions on development of cotton industry for the 13th five-year plan in the Yangtze River Region. China Cotton, 2016,43(1):3-7. (in Chinese )
doi: 10.11963/issn.1000-632
[2]   张献龙.湖北省棉花育种“十二五”研究构思. 中国棉花,2011,38(3):5-7.
ZHANG X L. Strategies for cotton breeding in the next five years in Hubei Province. China Cotton, 2011,38(3):5-7. (in Chinese)
[3]   叶祯维,邓晓英,石玉真,等.杂交棉中棉所70后代分离群体产量品质的表型变异分析. 棉花学报,2016,28(1):1-10. DOI:10.11963/issn.1002-7807.201601001
YE Z W, DENG X Y, SHI Y Z, et al. Analysis of phenotypic variation in fiber yield and quality in segregative populations of hybrid cotton CCRI 70. Cotton Science, 2016,28(1):1-10. (in Chinese with English abstract)
doi: 10.11963/issn.1002-7807.201601001
[4]   马麒,宿俊吉,李吉莲,等.海岛棉纤维品质与其种子短绒多寡的相关性分析. 棉花学报,2017,29(2):261-267. DOI:10.11963/1002-7807.mqdfj.20170301
MA Q, SU J J, LI J L, et al. Correlation analysis between seed fuzz amount and fiber quality of sea-island cotton (Gossypium barbadense). Cotton Science, 2017,29(2):261-267. (in Chinese with English abstract)
doi: 10.11963/1002-7807.mqdfj.20170301
[5]   罗海华,邵德意,陈功,等.陆地棉常规品种(系)与杂交组合性状相关性的比较分析. 作物杂志,2017(5):31-37. DOI:10.16035/j.issn.1001-7283.2017.05.006
LUO H H, SHAO D Y, CHEN G, et al. Comparative analysis of trait correlation between conventional varieties (lines) and hybrids of cotton. Crops, 2017(5):31-37. (in Chinese with English abstract)
doi: 10.16035/j.issn.1001-7283.2017.05.006
[6]   郑巨云,王俊铎,艾先涛,等.陆地棉产量与纤维品质性状的遗传相关分析. 新疆农业科学,2013,50(6):995-1002. DOI:10.6048/j.issn.1001-4330.2013.06.003
ZHENG J Y, WANG J D, AI X T, et al. Inheritance analysis of upland cotton yield and fiber quality characters. Xinjiang Agricultural Sciences, 2013,50(6):995-1002. (in Chinese with English abstract)
doi: 10.6048/j.issn.1001-4330.2013.06.003
[7]   李武,谢德意,赵付安,等.黄河流域棉花品种农艺性状的主成分及聚类分析. 江苏农业科学,2015,43(8):82-85. DOI:10.15889/j.issn.1002-1302.2015.08.02
LI W, XIE D Y, ZHAO F A, et al. Principal component and clustering analyses of upland cotton in the Yellow River Basin. Jiangsu Agricultural Sciences, 2015,43(8):82-85. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2015.08.02
[8]   邓艳凤,肖水平,柯兴盛,等.一批早熟棉育种材料F1代主要性状的主成分分析. 棉花科学,2019,41(2):14-19. DOI:10.3969/j.issn.2095-3143.2019.02.003.
DENG Y F, XIAO S P, KE X S,et al. Principal component analysis of main characters of F1 generation of a batch of early maturing cotton breeding materials. Cotton Sciences, 2019,41(2):14-19. (in Chinese)
doi: 10.3969/j.issn.2095-3143.2019.02.003
[9]   李飞,王清连,李成奇.陆地棉品种(系)资源的主成分分析和聚类分析. 江苏农业学报,2015,31(6):1211-1217. DOI:10.3969/j.issn.1000-4440.2015.06.004
LI F, WANG Q L, LI C Q. Principal component and clustering analyses of upland cotton variety (line) resources. Jiangsu Journal of Agricultural Sciences, 2015,31(6):1211-1217. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-4440.2015.06.004
[10]   董承光,李成奇,李生秀,等.棉花种质资源主要农艺性状的综合评价及聚类分析. 新疆农业科学,2011,48(3):425-429.
DONG C G, LI C Q, LI S X, et al. Comprehensive evaluation of the major agronomic traits and clustering analysis of cotton germplasm resources. Xinjiang Agricultural Sciences, 2011,48(3):425-429. (in Chinese)
[11]   孙振纲,姜艳丽,陈耕,等.27个陆地棉新种质材料主要性状研究及聚类分析. 山西农业科学,2015,43(7):773-776. DOI:10.3969/j.issn.1002-2481.2015.07.01
SUN Z G, JIANG Y L, CHEN G, et al. Study on main characters and clustering analysis of 27 new upland cotton germplasms. Journal of Shanxi Agricultural Sciences, 2015,43(7):773-776. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-2481.2015.07.01
[12]   徐敏,胡玉枢,李憬霖,等.早熟棉创新种质资源主要性状聚类及相关分析. 作物杂志,2017(1):25-31. DOI:10.16035/j.issn.1001-7283.2017.01.005
XU M, HU Y S, LI J L, et al. Clustering and correlation analysis of earlier-mature cotton innovation germplasm based on biological characters. Crops, 2017(1):25-31. (in Chinese with English abstract)
doi: 10.16035/j.issn.1001-7283.2017.01.005
[13]   邓艳凤,肖水平,柯兴盛,等.长江流域早熟棉新品系主要产量、品质及农艺性状的分析. 江西农业大学学报,2019,41(5):861-872. DOI:10.13836/j.jjau.2019099
DENG Y F, XIAO S P, KE X S, et al. Analysis of the main yield, quality and agronomic traits of the new early-maturing cotton lines in the Yangtze River Basin. Acta Agriculturae Universitatis Jiangxiensis, 2019,41(5):861-872. (in Chinese with English abstract)
doi: 10.13836/j.jjau.2019099
[14]   LI C Q, WANG X Y, DONG N, et al. QTL analysis for early-maturing traits in cotton using two upland cotton (Gossypium hirsutum L.) crosses. Breeding Science, 2013,63(2):154-163. DOI:10.1270/jsbbs.63.154
doi: 10.1270/jsbbs.63.154
[15]   LUAN M, GUO X, ZHANG Y, et al. QTL mapping for agronomic and fibre traits using two interspecific chromosome substitution lines of upland cotton. Plant Breeding, 2010,128(6):671-679. DOI:10.1111/j.1439-0523.2009.01650.x
doi: 10.1111/j.1439-0523.2009.01650.x
[16]   SAMI S A, AYMAN A D, MOHAMED A M A, et al. Construction of genetic linkage map with chromosomal assigment and quantitative trait loci associated with some important agronomic traits in cotton. GM Crops and Food, 2013,4(1):36-49. DOI:10.4161/gmcr.23287
doi: 10.4161/gmcr.23287
[17]   齐海坤,严根土,王宁,等.机采棉杂交后代主要株型性状与产量和品质的关系. 棉花学报,2017,29(5):456-465. DOI:10.11963/1002-7807.qhkhq.20170822
QI H K, YAN G T, WANG N, et al. Relation of plant type traits with fiber yield and quality in the crossing population of mechanical-harvested cotton. Cotton Science, 2017,29(5):456-465. (in Chinese with English abstract)
doi: 10.11963/1002-7807.qhkhq.20170822
[18]   梁欢欢.陆地棉主要产量、品质性状鉴定与优异种质筛选. 河北,保定:河北农业大学,2018.
LIANG H H. Identification of main yield and quality traits of upland cotton and screening of elite germplasm resources. Baoding, Heibei: Agricultural University of Hebei, 2018. (in Chinese with English abstract)
[19]   孙铭,符开欣,范彦,等.15份多花黑麦草优良引进种质的表型变异分析. 植物遗传资源学报,2016,17(4):655-662. DOI:10.13430/j.cnki.jpgr.2016.04.009
SUN M, FU K X, FAN Y, et al. Analysis of phenotypic variations in 15 introduced elite germplasm of Lolium multiflorum Lam. Journal of Plant Genetic Resources, 2016,17(4):655-662. (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.2016.04.009
[20]   尹会会,李秋芝,李海涛,等.134份国外陆地棉种质主要农艺性状与纤维品质性状的遗传多样性分析. 植物遗传资源学报,2017,18(6):1105-1115. DOI:10.13430/j.cnki.jpgr.2017.06.012
YIN H H, LI Q Z, LI H T, et al. Analysis of genetic diversity of the main agronomic and fibre quality characters of 134 foreign upland cotton germplasms. Journal of Plant Genetic Resources, 2017,18(6):1105-1115. (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.2017.06.012
[21]   朱绍琳,李秀章.棉花株型育种. 中国棉花,1980(3):11-15.
ZHU S L, LI X Z. Cotton plant type breeding. China Cotton, 1980(3):11-15. (in Chinese)
[22]   罗宏海,李俊华,张宏芝,等.源库调节对新疆高产棉花产量形成期光合产物生产与分配的影响. 棉花学报,2009,21(5):371-377.
LUO H H, LI J H, ZHANG H Z, et al. Effects of source and sink manipulation on transportation and allocation of leaf photosynthetic products during flowering and boll-setting stage in high yield cotton of Xinjiang. Cotton Science, 2009,21(5):371-377. (in Chinese with English abstract)
[23]   徐海,宫彦龙,夏原野,等.中日水稻品种杂交后代的株型性状与产量和品质的关系. 中国水稻科学,2016,30(3):283-290. DOI:10.16819/j.1001-7216.1016.5174
XU H, GONG Y L, XIA Y Y, et al. Relation of plant type traits with yield and quality in the RIL population derived from cross between Chinese rice variety and Japanese rice variety. Chinese Journal of Rice Science, 2016,30(3):283-290. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.1016.5174
[24]   田琴,司爱君,陈红,等.新陆早系列棉花品种产量性状与品质性状的相关性. 贵州农业科学,2018,46(2):1-4. DOI:10.3969/j.issn.1001-3601.2018.02.001
TIAN Q, SI A J, CHEN H, et al. Correlation between yield and quality trait of Xinluzao series cotton varieties. Guizhou Agricultural Sciences, 2018,46(2):1-4. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-3601.2018.02.001
[25]   杨六六,刘惠民,曹美莲,等.棉花产量和纤维品质性状的遗传研究. 棉花学报,2009,21(3):179-183.
YANG L L, LIU H M, CAO M L, et al. The inheritance of cotton yield and fiber quality characters. Cotton Science, 2009,21(3):179-183. (in Chinese with English abstract)
[26]   詹有俊,杨涛,孙建船,等.特早熟陆地棉熟性产量品质的遗传相关分析. 农业现代化研究,2013,34(1):118-121.
ZHAN Y J, YANG T, SUN J C, et al. Genetic correlation analysis of early maturity yield and quality in special-early mature Gossypium hirsutum L. Research of Agricultural Modernization, 2013,34(1):118-121. (in Chinese with English abstract)
[27]   ZHAI H C, GONG W K, TAN Y N, et al. Identification of chromosome segment substitution lines of Gossypium barbadense introgressed in G. hirsutum and quantitative trait locus mapping for fiber quality and yield traits. PLoS ONE, 2016,11(9):e0159101. DOI:10.1371/journal.pone.0159101
doi: 10.1371/journal.pone.0159101
[28]   LUO C, SHU B, YAO Q S, et al. Construction of a high-density genetic map based on large-scale marker development in mango using specific-locus amplified fragment sequencing (SLAF-seq). Frontiers in Plant Science, 2016,7:1310. DOI:10.3389/fpls.2016.01310
doi: 10.3389/fpls.2016.01310
[29]   CLEMENT J D, CONSTABLE G A, STILLER W N, et al. Negative associations still exist between yield and fibre quality in cotton breeding programs in Australia and USA. Field Crops Research, 2012,128:1-7. DOI:10.1016/j.fcr.2011.12.002
doi: 10.1016/j.fcr.2011.12.002
[30]   庄萍萍,李伟,魏育明,等.波斯小麦农艺性状相关性及主成分分析. 麦类作物学报,2006(4):11-14. DOI:10.7606/j.issn.1009-1041.2006.04.142
ZHUANG P P, LI W, WEI Y M, et al. Correlation and principal component analysis in agronomic traits of Triticum carthlicum Nevski. Journal of Triticeae Crops, 2006,26(4):11-14. (in Chinese with English abstract)
doi: 10.7606/j.issn.1009-1041.2006.04.142
[31]   康美玲,田忠景,张倩倩.利用醇溶蛋白电泳图谱分析不同玉米品种的遗传多样性. 江苏农业科学,2013,41(10):70-72. DOI:10.3969/j.issn.1002-1302.2013.10.024
KANG M L, TIAN Z J, ZHANG Q Q. Study on genetic diversity among different maize varieties by SDS-PAGE protein electrophoresis. Jiangsu Agricultural Sciences, 2013,41(10):70-72. (in Chinese)
doi: 10.3969/j.issn.1002-1302.2013.10.024
[32]   殷剑美,武耀廷,朱协飞,等.陆地棉产量与品质性状的主基因与多基因遗传分析. 棉花学报,2003(2):67-72.
YIN J M, WU Y T, ZHU X F, et al. Genetic analysis of yield traits and fiber qualities by using major gene plus polygene mixed inheritance model in upland cotton (G. hirsutum L.). Cotton Science, 2003,15(2):67-72. (in Chinese with English abstract)
[33]   李成奇,郭旺珍,张天真.衣分不同陆地棉品种的产量及产量构成因素的遗传分析. 作物学报,2009,35(11):1990-1999. DOI:10.374/SP.j.1006.2009.01990
LI C Q, GUO W Z, ZHANG T Z. Quantitative inheritance of yield and its components in upland cotton (Gossypium hirsutum L.) cultivars with varied lint percentages. Acta Agronomica Sinica, 2009,35(11):1990-1999. (in Chinese with English abstract)
doi: 10.374/SP.j.1006.2009.01990
[34]   胡建斌,马双武,简在海,等.中国甜瓜种质资源形态性状遗传多样性分析. 植物遗传资源学报,2013,14(4):612-619. DOI:10.3724/SP.J.1259.2013.00042
HU J B, MA S W, JIAN Z H, et al. Analysis of genetic diversity of Chinese melon (Cucumis melo L.) germplasm resources based on morphological characters. Journal of Plant Genetic Resources, 2013,14(4):612-619. (in Chinese with English abstract)
doi: 10.3724/SP.J.1259.2013.00042
[35]   耿立格,王丽娜,张磊,等.河北省绿子叶黑豆种质资源表现型和ISSR标记遗传多样性分析.植物遗传资源学报,2010,11(3):266-270.
GENG L G, WANG L N, ZHANG L, et al. Genetic diversity analysis of green-cotyledon black soybean germplasm resources in Hebei Province based on agronomic traits and ISSR markers. Journal of Plant Genetic Resources, 2010,11(3):266-270. (in Chinese with English abstract)
[36]   BAI C K, WEN M M, ZHANG L J. Genetic diversity and sampling strategy of Scutellaria baicalensis germplasm resources based on ISSR. Genetic Resources and Crop Evolution, 2013,60(5):1673-1685. DOI:10.1007/s10722-012-9949-9
doi: 10.1007/s10722-012-9949-9
[1] Attached table 1 Main agronomic characters for the 72 varieties Download
[1] Shurong WANG, Yuan YUAN, Yang LIU, Junlong MENG. Leucopholiota decorosa: a newly recorded species of Tricholomataceae (Agaricaceae) in China[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 599-603.
[2] Gongga,Yifei WANG, Gesangzhuoma, Suolangsizhu, Nimayangzong, Labaciren. Identification of capsular serotype D Pasteurella multocida isolated from Tibetan swine and its biological characteristics[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 611-617.
[3] Hainian CHEN,Rong FENG,Shengzhu YANG,Benfu CAO,Mingjiang WEN,Li LIU,Yingang LU. Identification of a biocontrol strain and optimization of its fermentation conditions[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 177-188.
[4] Huizhen YU,Hanli HOU,Wenxiu YIN,Quan ZHANG,Chao SUN,Mingzhe ZHANG,Xiaofeng ZHANG,Li MIAO,Shan WU. Application of TaqMan low density array to simultaneous identification of multiple animal-derived components[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 189-200.
[5] Fengli WANG,Jiying QIU,Meixue DAI,Leilei CHEN,Shuangzhi ZHAO,Xue XIN,Qingxin ZHOU. Isolation, identification and pathogenicity study of pathogens during postharvest storage of sweet cherries[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 126-134.
[6] Xia LI,Wenjun XIA,Sichao MAO,Shuting LU,Kaikun MO,Min LIAO,Jiyong ZHOU,Xiaojuan ZHENG. Isolation, identification and whole genome sequence analysis of serotype 4 fowl adenovirus Zhejiang strain[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 635-646.
[7] Yatao HE,Dandan GAO,Senning GAN,Ting SUN,Kuizheng CAI,Junlin LIU. Isolation and identification of a red pigment producer endophytic fungus Monascus sanguineus from Rehmannia glutinosa Libosch[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 1-7.
[8] ZHANG Yifan, CHEN Qi, CUI Zongyan, ZHNANG Jinjie, SHEN Lirong. Research progress in authenticity identification and detection technology of honey[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 649-658.
[9] Lü Jingwen, LIU Rui, LI Guohua, LI Hongye, WANG Hongkai. Identification of pathogens causing fruit spot disease on Citrus grandis.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 687-694.
[10] PANG Yujie, LI Haiyan, ZHU Xiaoheng, GAO Fuming, YIN Yiming, JIA Huijuan . Genetic identification of bud sport strain “11-06-25” from “Sanbenti” grape[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 73-80.
[11] ZHU Hongxue, TIAN Zhongling, CAI Ruihang, LI Xiaolin, ZHENG Jingwu. Heterodera koreana, a new record of cyst-forming nematodes in Zhejiang Province, China[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 81-88.
[12] WANG Lili, GUO Wei, FU Chunna, YAN Hong. Isolation and screening of an electrochemically active strain Bacillus cereus sp. WL027 using phenol as fuel and preliminary study on its mechanism of electricity production[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(6): 654-664.
[13] Song Gelian1, Han Ruizhen2,3, Zhang Yonghua3*, He Yong2*. Development of  agricultural pests detection and identification  system based on the technology of wireless transmission[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(5): 585-590.
[14] Yuan Bing, Cui Hairui, Fu Haowei, Jiang Meng, Li Ruiqing, Zhao Haijun, Shu Qingyao. Molecular characterization and agronomic trait analysis of rice Os09g24220 gene insertion mutants.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(4): 456-462.
[15] WANG Yingying,HUANG Lu, FAN Longjiang*. Main agronomic traits, domestication and breeding of Gu (Zizania latifolia)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(6): 629-635.