Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (2): 177-188    DOI: 10.3785/j.issn.1008-9209.2019.05.301
Plant protection     
Identification of a biocontrol strain and optimization of its fermentation conditions
Hainian CHEN1(),Rong FENG1,2,Shengzhu YANG1,Benfu CAO1,3,Mingjiang WEN1,Li LIU1,2(),Yingang LU1,2,3
1.Agricultural College, Guizhou University, Guiyang 550025, China
2.Institute of New Fertilizer Resources and Technology, Guizhou University, Guiyang 550025, China
3.Guizhou Key Laboratory for Tobacco Quality Study, Guiyang 550025, China
Download: HTML   HTML (   PDF(1225KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The taxonomic identification and antimicrobial effect of a strain called F11 which has inhibitory effect on strawberry gray mold was studied. In order to improve the fermentation efficiency of the strain, the fermentation formula and conditions were optimized by orthogonal experiment and single factor test. The results showed that the strain F11 could inhibit the growth and reproduction of 12 common pathogens with high inhibition rate reaching 79.88% or more, which showed that this strain possessed broad-spectrum and high-efficiency antimicrobial effect, and that it would be a hidden promising resource for biological control agent to resist plant diseases. The strain F11 was identified as Bacillus amyloliquefaciens by observation of colony morphology, physiological and biochemical tests, 16S rRNA and gyrB gene sequencing. The fermentation medium of strain F11 was optimized from L16 (43×26) orthogonal test: 3.00 g/L beef extract, 10.00 g/L peptone, 5.00 g/L NaCl, 3.00 g/L glucose, 2.00 g/L MgCl2. Furthermore, the single factor test further showed that based on the optimized medium, the suitable initial pH of strain F11 culture was 7.0, and the befitting temperature was 30 ℃, and the proper oscillation rate was 150 r/min, which the number of viable cells were 4.67×109 CFU/mL.



Key wordsbiocontrol bacterium      identification      inhibitory effect      orthogonal experiment      medium optimization     
Received: 30 May 2019      Published: 22 May 2020
CLC:  S 476.1  
Corresponding Authors: Li LIU     E-mail: 571661476@qq.com;liuliz706@sina.com
Cite this article:

Hainian CHEN,Rong FENG,Shengzhu YANG,Benfu CAO,Mingjiang WEN,Li LIU,Yingang LU. Identification of a biocontrol strain and optimization of its fermentation conditions. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 177-188.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.05.301     OR     http://www.zjujournals.com/agr/Y2020/V46/I2/177


1株生防菌的鉴定及其发酵条件优化

对草莓灰霉病菌具有较强拮抗活性的生防菌株F11进行分类学鉴定和抑菌效果评价,并采用正交试验和单因素试验对该菌株发酵配方和发酵条件进行优化,以期提高该菌株的发酵效率。结果表明,F11菌株对水稻稻瘟病菌、核盘菌等12种常见病原菌抑制率均达79.88%以上,表现出高效、广谱的抑菌特性,可作为植物病害生物防治的潜在资源。经菌落形态观察、生理生化测定、16S rRNA及gyrB基因测序分析,确定菌株F11为解淀粉芽孢杆菌(Bacillus amyloliquefaciens)。通过L16(43×26)正交试验优化,确定该菌株适宜的发酵培养基配方为:3.00 g/L牛肉膏、10.00 g/L蛋白胨、5.00 g/L NaCl、3.00 g/L葡萄糖、2.00 g/L MgCl2。单因素试验结果进一步表明,基于优化配方,菌株F11培养的适宜初始pH为7.0、温度为30 ℃、振荡速率为150 r/min;平板计数显示,上述培养条件下活菌数为4.67×109 CFU/mL。


关键词: 生防菌,  鉴定,  抑菌效果,  正交试验,  培养基优化 

处理

Treatment

牛肉膏

Beef extract

蛋白胨

Peptone

NaCl

葡萄糖

Glucose

MnMoBFeMg
MnSO4?2H2ONa2MoO4H3BO3FeSO4?7H2OMgCl2
11(1.00)1(2.00)1(2.00)1(0.00)1(0.00)1(0.00)1(0.00)1(0.00)1(0.50)
21(1.00)2(5.00)2(5.00)1(0.00)1(0.00)2(0.05)2(0.05)2(0.10)2(2.00)
31(1.00)3(7.00)3(7.00)2(3.00)2(0.50)1(0.00)1(0.00)1(0.00)2(2.00)
41(1.00)4(10.00)4(10.00)2(3.00)2(0.50)2(0.05)2(0.05)2(0.10)1(0.50)
52(2.00)1(2.00)2(5.00)2(3.00)2(0.50)1(0.00)2(0.05)2(0.10)1(0.50)
62(2.00)2(5.00)1(2.00)2(3.00)2(0.50)2(0.05)1(0.00)1(0.00)2(2.00)
72(2.00)3(7.00)4(10.00)1(0.00)1(0.00)1(0.00)2(0.05)2(0.10)2(2.00)
82(2.00)4(10.00)3(7.00)1(0.00)1(0.00)2(0.05)1(0.00)1(0.00)1(0.50)
93(3.00)1(2.00)3(7.00)1(0.00)2(0.50)2(0.05)2(0.05)2(0.10)2(2.00)
103(3.00)2(5.00)4(10.00)1(0.00)2(0.50)1(0.00)1(0.00)1(0.00)1(0.50)
113(3.00)3(7.00)1(2.00)2(3.00)1(0.00)2(0.05)2(0.05)2(0.10)1(0.50)
123(3.00)4(10.00)2(5.00)2(3.00)1(0.00)1(0.00)1(0.00)1(0.00)2(2.00)
134(5.00)1(2.00)4(10.00)2(3.00)1(0.00)2(0.05)1(0.00)1(0.00)2(2.00)
144(5.00)2(5.00)3(7.00)2(3.00)1(0.00)1(0.00)2(0.05)2(0.10)1(0.50)
154(5.00)3(7.00)2(5.00)1(0.00)2(0.50)2(0.05)1(0.00)1(0.00)1(0.50)
164(5.00)4(10.00)1(2.00)1(0.00)2(0.50)1(0.00)2(0.05)2(0.10)2(2.00)
Table 1 Design of L16 (43×26) orthogonal array experiment

病原菌

Pathogen

相对抑制率

Relative inhibition

rate/%

病原菌直径

Pathogen diameter

对照组

Control group/cm

F11拮抗组

Antagonism group of F11/cm

t检验

t test

P

P value

烟草黑胫病菌

Phytophthora parasitica var.

80.535.63±1.021.70±0.266.460.002 9

烟草炭疽病菌

Colletotrichum nicotianae Av.

90.695.05±0.351.15±0.0715.300.002 1

樟树胶孢炭疽病菌

Colletotrichum gloeosp orioides

86.679.00±0.001.85±0.0712.350.000 1

高粱斑点病菌

Pseudomonas syringae pv. syringae Van Hall

80.978.63±0.642.25±0.4911.810.001 3

玉兰炭疽病菌

Colletotrchum magnoliae camara

83.518.63±0.632.05±0.2113.540.008 7

核盘菌

Sclerotinia sclerotiorum

100.009.00±0.000.75±0.0111.820.000 1

禾谷炭疽菌

Colletotrichum graminicola Cesati Wilson

82.156.63±0.491.80±0.2015.730.000 1

玉米大斑病菌

Setosphaeria turcica

94.747.40±0.961.10±0.2011.080.000 2

烟草赤星病菌

Alternaria alternata (Freis) Keissler

81.427.30±0.561.97±0.2115.540.000 1

辣椒炭疽菌

Colletotrichum capsici

86.069.00±0.001.90±0.2012.310.001 4

水稻稻瘟病菌

Pyricularia oryzae

79.886.30±0.361.87±0.2118.440.000 1

猕猴桃葡萄座腔菌

Botryosphaeria dothidea

91.529.00±0.001.45±0.2114.130.000 2
Table 2 Inhibitory effects of strain F11 on 12 pathogens
Fig. 1 Morphology of strain F11A.Visual observation; B.Observation under optical microscope.
指标 IndexF11LX1[25]WTD[26]H-2[27]H-7[28]
β-半乳糖苷酶 β-galactosidase+
接触酶 Catalase++
氧化酶 Oxidase++
脲酶 Urease++
精氨酸双水解酶 Arginine dihydrolase++
淀粉水解 Starch hydrolysis+++
明胶水解 Gelatin hydrolysis+++++
酪素水解 Casein hydrolysis++
鸟氨酸脱羧酶 Ornithine decarboxylase
赖氨酸脱羧酶 Lysine decarboxylase
硝酸盐还原 Nitrate reduction++
柠檬酸生长 Citric acid growth+++
50 ℃生长 Growth at 50 ℃+
VP反应 Voges-Proskauer reaction+++++
甲基红反应 Methyl red reaction
硫化氢产生 Hydrogen sulfide production+
甘露醇 Mannitol++
山梨醇 Sorbitol++
鼠李糖 L-(+)-rhamnose
蔗糖 D(+)-sucrose++++
蜜二糖 Melibiose++
革兰氏染色 Gram stain+++
Table 3 Comparison of physiological and biochemical identification results of strain F11 with other Bacillus amyloliquefaciens
Fig. 2 Phylogenetic tree of 16S rRNA
Fig. 3 Phylogenetic tree of gyrB gene
Fig. 4 Comparison of D600 nm values of F11 suspension under L16 (43×26) orthogonal test treatments and NB medium treatmentDifferent lowercase letters above the bars represent significant differences at the 0.05 probability level; n=5.
Fig. 5 Comparison of D600 nm values of F11 suspension in the levels of various factors in the orthogonal testDifferent lowercase letters above the data points represent significant differences among levels of each experimental factor at the 0.05 probability level.

因子

Factor

极差

Range

P

P value

优选量

Optimal dosage/(g/L)

牛肉膏 Beef extract0.259 22.96×10-203.00
蛋白胨 Peptone0.390 49.54×10-2510.00
NaCl0.343 31.65×10-225.00
葡萄糖 Glucose0.320 15.64×10-263.00
Mn0.517 01.64×10-320
Mo0.039 14.13×10-40
B0.012 80.200
Fe0.012 80.210
Mg0.159 76.82×10-172.00
Table 4 Range, P value and optimal dosage for each factor in the orthogonal test
Fig. 6 Effects of different initial pH on the growth of strain F11Different lowercase letters above the bars represent significant differences among the different treatments with the same medium at the 0.05 probability level; n=5.
Fig. 7 Effects of different incubation temperatures on strain F11Different lowercase letters above the bars represent significant differences among the different treatments with the same medium at the 0.05 probability level; n=5.
Fig. 8 Effect of different initial oscillation rates on the growth of strain F11Different lowercase letters above the bars represent significant differences among the different treatments with the same medium at the 0.05 probability level; n=5.
Fig. 9 Comparison of viable cells of strain F11 between optimized formula and NB liquid mediumDifferent uppercase letters above the bars represent highly significant differences at the 0.01 probability level; n=5.
[1]   BEHNAM S, AHMADZADEH M, TEHRANI S A, et al. Biological control of Sclerotinia sclerotiorum (Lib.) de bary, the causal agent of white mold, by Pseudomonas species on canola petals. Communications in Agricultural and Applied Biological Sciences, 2007,72(4:993-996.
[2]   FIGUEROA-LóPEZ A M, CORDERO-RAMíREZ J D, MARTíNEZ-áLVAREZ J C, et al. Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. SpringerPlus, 2016,5(1):330. DOI:10.1186/s40064-016-1780-x
doi: 10.1186/s40064-016-1780-x
[3]   ONGENA M, JACQUES P. Bacillus lipopeptides, versatile weapons for plant disease biocontrol. Trends in Microbiology, 2008,16(3):115-125. DOI:10.1016/j.tim.2007.12.009
doi: 10.1016/j.tim.2007.12.009
[4]   邱德文.我国植物病害生物防治的现状及发展策略.植物保护,2010,36(4):15-18, 35. DOI:10.3969/j.issn.0529-1542.2010.04.004
QIU D W. Current status and development strategy for biological control of plant diseases in China. Plant Protection, 2010,36(4):15-18, 35. (in Chinese with English abstract)
doi: 10.3969/j.issn.0529-1542.2010.04.004
[5]   吴翔,甘炳成,谢丽源,等.一株烟草青枯拮抗细菌的筛选、鉴定和培养特性研究.中国土壤与肥料,2019(2):208-215. DOI:10.11838/sfsc.1673-6257.18217
WU X, GAN B C, XIE L Y, et al. Screening, identification and culture condition optimization of a bacteria against Ralstonia solanacearum of tobacco. Soil and Fertilizer Sciences in China, 2019(2):208-215. (in Chinese with English abstract)
doi: 10.11838/sfsc.1673-6257.18217
[6]   霍沁建,张深,王若焱.烟草青枯病研究进展.中国农学通报,2007,23(8):364-368. DOI:10.3969/j.issn.1671-0487.2016.06.366
HUO Q J, ZHANG S, WANG R Y. Advance and control of tobacco bacterial wilt disease. Chinese Agricultural Science Bulletin, 2007,23(8):364-368. (in Chinese with English abstract)
doi: 10.3969/j.issn.1671-0487.2016.06.366
[7]   林英,司春灿,赵青松,等.一株死谷芽孢杆菌的分离、鉴定及抗病促生效果初探.北方园艺,2014(13):88-92.
LIN Y, SI C C, ZHAO Q S, et al. Isolation and identification of a Bacillus vallismortis CZand primary testing its disease-suppressive and growth-promoting capacities. Northern Horticulture, 2014(13):88-92. (in Chinese with English abstract)
[8]   CHE J M, LIU B, LIU G H, et al. Induced mutation breeding of Brevibacillus brevis FJAT-0809-GLX for improving ethylparaben production and its application in the biocontrol of Lasiodiplodia theobromae. Postharvest Biology and Tech-nology, 2018,146:60-67. DOI:10.1016/j.postharvbio.2018.08.011
doi: 10.1016/j.postharvbio.2018.08.011
[9]   DONG L L, XU J, ZHANG L J, et al. Rhizospheric microbial communities are driven by Panax ginseng at different growth stages and biocontrol bacteria alleviates replanting mortality. Acta Pharmaceutica Sinica B, 2018,8(2):272-282. DOI:10.1016/j.apsb.2017.12.011
doi: 10.1016/j.apsb.2017.12.011
[10]   周小虹,陆兆新,吕凤霞,等.Bacillus subtilis fmbj与2-脱氧葡萄糖协同作用对Rhizopus stolonifer的生物防治效果.中国农业科学,2011,44(21):4447-4453. DOI:10.3864/j.issn.0578-1752.2011.21.013
ZHOU X H, LU Z X, Lü F X, et al. Bio-control effect of combining Bacillus subtilis fmbj with 2-deoxy-D-glucose on Rhizopus stolonifer. Scientia Agricultura Sinica, 2011,44(21):4447-4453. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2011.21.013
[11]   EMMERT E A B, HANDELSMAN J. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiology Letters, 1999,171:1-9.
[12]   SYLLA J, ALSANIUS B W, KRüGER E, et al. Control of Botrytis cinereain strawberries by biological control agents applied as single or combined treatments. European Journal of Plant Pathology, 2015,143(3):461-471. DOI:10.1007/s10658-015-0698-4
doi: 10.1007/s10658-015-0698-4
[13]   COMPANT S, CLéMENT C, SESSITSCH A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology & Biochemistry, 2010,42(5):669-678. DOI:10.1016/j.soilbio.2009.11.024
doi: 10.1016/j.soilbio.2009.11.024
[14]   LIU Y F, CHEN Z Y, NG T B, et al. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides, 2007,28(3):553-559. DOI:10.1016/j.peptides.2006.10.009
doi: 10.1016/j.peptides.2006.10.009
[15]   何欣,郝文雅,杨兴明,等.生物有机肥对香蕉植株生长和香蕉枯萎病防治的研究.植物营养与肥料学报,2010,16(4):978-985. DOI:10.11674/zwyf.2010.0430
HE X, HAO W Y, YANG X M, et al. Effects of bioorganic fertilization on growth and controlling fusarium-wilt disease of banana. Plant Nutrition and Fertilizer Science, 2010,16(4):978-985. (in Chinese with English abstract)
doi: 10.11674/zwyf.2010.0430
[16]   HELMY M, BADDAR D, EL’MASRY M H. Affinity purification of a siderophore that exhibits an antagonistic effect against soft rot bacterium. Biochemistry (Moscow), 2008,73(7):776-782. DOI:10.1134/s0006297908070055
doi: 10.1134/s0006297908070055
[17]   吴慧玲,刘伟成,董丹,等.一株生防细菌的分离鉴定及其抑菌活性物质的分析.中国农学通报,2012,28(33):107-111.DOI:10.3969/j.issn.1000-6850.2012.33.022
WU H L, LIU W C, DONG D, et al. Isolation and identification of an Bacillus strain and analysis of its antibacterial substances. Chinese Agricultural Science Bulletin, 2012,28(33):107-111. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-6850.2012.33.022
[18]   赵青云,赵秋芳,王辉,等.根际促生菌Bacillus subtilis Y-IVI在香草兰上的应用效果研究.植物营养与肥料学报, 2015,21(2):535-540. DOI:10.11674/zwyf.2015.0230
ZHAO Q Y, ZHAO Q F, WANG H, et al. Beneficial effects of plant growth promoter rhizobacteria on vanilla (Vanilla planifolia Ames.) growth. Journal of Plant Nutrition and Fertilizer, 2015,21(2:535-540. (in Chinese with English abstract)
doi: 10.11674/zwyf.2015.0230
[19]   陈敏,郭旭文,李春远,等.解淀粉芽孢杆菌SC1150的抑菌活性及其液体发酵条件的优化.生态科学,2015,34(3):7-12. DOI:10.14108/j.cnki.1008-8873.2015.03.002
CHEN M, GUO X W, LI C Y, et al. Studies on fungicidal activity and liquid fermentation optimization of Bacillus amyloliquefaciens strain SC1150. Ecological Science, 2015, 34(3):7-12. (in Chinese with English abstract)
doi: 10.14108/j.cnki.1008-8873.2015.03.002
[20]   董丽红,郭庆港,王培培,等.PhoR/PhoP双组分对枯草芽孢杆菌NCD-2菌株中surfactin合成的影响.植物病理学报,2018,48(1):119-127. DOI:10.13926/j.cnki.apps.000078
DONG L H, GUO Q G, WANG P P, et al. The effect of PhoR/PhoP two-component regulatory system on surfactin production in Bacillus subtilis NCD-2. Acta Phytopathologica Sinica, 2018,48(1):119-127. (in Chinese with English abstract)
doi: 10.13926/j.cnki.apps.000078
[21]   GOODFELLOW M, KAMPFER P, BUSSE H J, et al. Bergey’s Manual of Systematic Bacteriology. 2nd ed. Vol. 5. New York, US: Springer, 2012.
[22]   YAMAMOTO S, HARAYAMA S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and Environmental Microbiology, 1995,61(10):3768.
[23]   刘丽,曾真,方萍.利用味精废液发酵枯草芽孢杆菌的培养基配方优化.浙江大学学报(农业与生命科学版),2016,42(4):485-494. DOI:10.3785/j.issn.1008-9209.2015.08.291
LIU L, ZENG Z, FANG P. Optimization of a culture medium for Bacillus subtilis based on monosodium glutamate wastewater. Journal of Zhejiang University (Agriculture and Life Sciences), 2016,42(4):485-494. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2015.08.291
[24]   和文祥,洪坚平.环境微生物学.北京:中国农业大学出版社,2007.
HE W X, HONG J P. Environmental Microbiology. Beijing: China Agricultural University Press, 2007. (in Chinese)
[25]   张超,王祥红,徐涛,等.一株解淀粉芽孢杆菌的分离鉴定及其抑菌条件研究.生物技术通报,2015,31(9):170-176. DOI:10.13560/j.cnki.biotech.bull.1985.2015.09.024
ZHANG C, WANG X H, XU T, et al. Isolation and identification of Bacillus amyloliquefaciens WTD and the optimal conditions of its antimicrobial activity. Biotechnology Bulletin, 2015,31(9):170-176. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2015.09.024
[26]   黄建凤,张发宝,逄玉万,等.两株香蕉枯萎病拮抗细菌的筛选及抑菌机理.微生物学通报,2017,44(4):835-844. DOI:10.13344/j.microbiol.china.160370
HUANG J F, ZHANG F B, PANG Y W, et al. Inhibition ofbanana Fusarium wilt by two biocontrol agents. Microbiology China, 2017,44(4):835-844. (in Chinese with English abstract)
doi: 10.13344/j.microbiol.china.160370
[27]   辛美丽,吕芳,孙福新.一株具有降解性能的巨大芽孢杆菌的鉴定与发酵条件优化.广西科学院学报,2015,31(4):247-252. DOI:10.3969/j.issn.1002-7378.2015.04.004
XIN M L, Lü F, SUN F X. Identification and optimization of fermentation condition for Bacillus megaterium from sea cumber ponds. Journal of Guangxi Academy of Sciences, 2015,31(4):247-252. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-7378.2015.04.004
[28]   CHRISTENSEN H, NORDENTOFT S, OLSEN J E. Phylogenetic relationships of Salmonella based on rRNA sequences. International Journal of Systematic Bacteriology, 1998,48(2):605-610. DOI:10.1099/00207713-48-2-605
doi: 10.1099/00207713-48-2-605
[29]   张玉秀,李林峰,柴团耀,等.锰对植物毒害及植物耐锰机理研究进展.植物学报,2010,45(4):506-520. DOI:10.3969/j.issn.1674-3466.2010.04.014
ZHANG Y X, LI L F, CHAI T Y, et al. Mechanisms of manganese toxicity and manganese tolerance in plants. Chinese Bulletin of Botany, 2010,45(4):506-520. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-3466.2010.04.014
[30]   杨霞,陈陆,赵军,等.16S rRNA基因联合gyrBgrpErecA基因对鸡源鲍氏志贺菌hn03株进行分子起源分析.中国兽医学报,2011,31(7):983-989. DOI:10.16303/j.cnki.1005-4545.2011.07.005
YANG X, CHEN L, ZHAO J, et al. Molecular origin analysis of Shigella boydii Str. hn03 isolated from chicken based on 16S rRNA, gyrB, grpE and recA genes. Chinese Journal of Veterinary Science, 2011,31(7):983-989. (in Chinese with English abstract)
doi: 10.16303/j.cnki.1005-4545.2011.07.005
[31]   郝云婕,韩素贞.gyrB基因在细菌系统发育分析中的应用.生物技术通报,2008(2):39-41. DOI:10.13560/j.cnki.biotech.bull.1985.2008.02.007
HAO Y J, HAN S Z. Application of gyrB gene in bacterial phylogenetic analysis. Biotechnology Bulletin, 2008(2):39-41. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2008.02.007
[32]   杨晓楠,李杨,苗建强,等.拮抗放线菌T111菌株鉴定、发酵液理化性质测定及发酵条件优化.应用与环境生物学报,2011,17(4):541-547. DOI:10.3724/SP.J.1145.2011.00541
YANG X N, LI Y, MIAO J Q, et al. Identification, physical and chemical property determination, and fermentation condition optimization of Antagonistic strain T111. Chinese Journal of Applied and Environmental Biology, 2011,17(4):541-547. (in Chinese with English abstract)
doi: 10.3724/SP.J.1145.2011.00541
[33]   ROONEY A P, PRICE N P J, EHRHARDT C, et al. Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. International Journal of Systematic and Evolutionary Microbiology, 2009,59(10):2429-2436. DOI:10.1099/ijs.0.009126-0
doi: 10.1099/ijs.0.009126-0
[34]   陈志谊,刘永峰,刘邮洲,等.植物病害生防芽孢杆菌研究进展.江苏农业学报,2012,28(5):999-1006.
CHEN Z Y, LIU Y F, LIU Y Z, et al. Research progress in biocontrol of Bacillus spp. against plant diseases. Jiangsu Journal of Agricultural Sciences, 2012,28(5):999-1006. (in Chinese with English abstract)
[35]   汪静杰,赵东洋,刘永贵,等.解淀粉芽孢杆菌SWB16菌株脂肽类代谢产物对球孢白僵菌的拮抗作用.微生物学报,2014,54(7):778-785. DOI:10.13343/j.cnki.wsxb.2014.07.008
WANG J J, ZHAO D Y, LIU Y G, et al. Antagonism against Beauveria bassiana by lipopeptide metabolites produced by entophyte Bacillus amyloliquefaciens strain SWB16. Acta Microbiologica Sinica, 2014,54(7):778-785. (in Chinese with English abstract)
doi: 10.13343/j.cnki.wsxb.2014.07.008
[36]   杨珍福,吴毅歆,陈映岚,等.烟草拮抗内生细菌的筛选与防病促生长效果.中国烟草科学,2014,35(6):48-53. DOI:10.13496/j.issn.1007-5119.2014.06.010
YANG Z F, WU Y X, CHEN Y L, et al. Screening, growth promotion, and disease control of antagonistic and endophytic bacteria in tobacco. Chinese Tobacco Science, 2014,35(6):48-53. (in Chinese with English abstract)
doi: 10.13496/j.issn.1007-5119.2014.06.010
[37]   叶明,陶涛,陈吴西.一种解磷菌剂的研制及其应用效果.浙江大学学报(农业与生命科学版),2010,36(6):657-661. DOI:10.3785/j.issn.1008-9209.2010.06.010
YE M, TAO T, CHEN W X. Development and application of a phosphate-dissolving bacteria agent. Journal of Zhejiang University (Agriculture and Life Sciences), 2010,36(6):657-661. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2010.06.010
[38]   李娟,夏凯丽,王远宏,等.解淀粉芽孢杆菌LJ1摇瓶发酵条件优化.生物技术通报,2015,31(12):214-220. DOI:10.13560/j.cnki.biotech.bull.1985.2015.12.031
LI J, XIA K L, WANG Y H, et al. The optimization of fermentation condition in flask for Bacillus amyloliquefaciens LJ1. Biotechnology Bulletin, 2015,31(12):214-220. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2015.12.031
[1] Fengli WANG,Jiying QIU,Meixue DAI,Leilei CHEN,Shuangzhi ZHAO,Xue XIN,Qingxin ZHOU. Isolation, identification and pathogenicity study of pathogens during postharvest storage of sweet cherries[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 126-134.
[2] Xia LI,Wenjun XIA,Sichao MAO,Shuting LU,Kaikun MO,Min LIAO,Jiyong ZHOU,Xiaojuan ZHENG. Isolation, identification and whole genome sequence analysis of serotype 4 fowl adenovirus Zhejiang strain[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 635-646.
[3] Yatao HE,Dandan GAO,Senning GAN,Ting SUN,Kuizheng CAI,Junlin LIU. Isolation and identification of a red pigment producer endophytic fungus Monascus sanguineus from Rehmannia glutinosa Libosch[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 1-7.
[4] ZHANG Yifan, CHEN Qi, CUI Zongyan, ZHNANG Jinjie, SHEN Lirong. Research progress in authenticity identification and detection technology of honey[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 649-658.
[5] Lü Jingwen, LIU Rui, LI Guohua, LI Hongye, WANG Hongkai. Identification of pathogens causing fruit spot disease on Citrus grandis.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 687-694.
[6] PANG Yujie, LI Haiyan, ZHU Xiaoheng, GAO Fuming, YIN Yiming, JIA Huijuan . Genetic identification of bud sport strain “11-06-25” from “Sanbenti” grape[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 73-80.
[7] ZHU Hongxue, TIAN Zhongling, CAI Ruihang, LI Xiaolin, ZHENG Jingwu. Heterodera koreana, a new record of cyst-forming nematodes in Zhejiang Province, China[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 81-88.
[8] LIU Li, ZENG Zhen, FANG Ping. Optimization of a culture medium for Bacillus subtilis based on monosodium glutamate wastewater[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(04): 485-494.
[9] Song Gelian1, Han Ruizhen2,3, Zhang Yonghua3*, He Yong2*. Development of  agricultural pests detection and identification  system based on the technology of wireless transmission[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(5): 585-590.
[10] LI Haiguang, SHI Jiachun*, WU Jianjun. Spatial variability characteristics of soil heavy metals in the cropland and its pollution
source identification around the contaminated sites
[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(3): 325-334.
[11] MA Lin1, ZHOU Lian1, ZHOU Zheng-jian1, TANG Gui-xiang2, SHEN Zhi-cheng2, SHOU Hui-xia1*. Establishment of methods for identifying rapidly and precisely transgenic rice and soybean containing herbicide-resistant gene bar and EPSPS[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(6): 647-654.
[12] . Isolation of mitogenactivated protein kinase SlMAPK12 gene and characterization of its expression pattern in Solanum lycopersicum[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 551-558.
[13] DAI Meisong, WANG Yuezhi, SUN Tianlin, SHI Zebin. Sgenotype identification of two F1 progenies of ‘Cuiguan’ (Pyrus pyrifolia Nakai. cv.)  and their cross compatibility strength observation[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(2): 132-138.
[14] SUN Rong‐rong, PENG Zhen, CHENG Lin, SHAO Tai‐liang,LU Gang. Comparison of identification methods for resistance to Sclerotinia sclerotiorum and screening of resistant materials in cauliflower[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(6): 596-602.
[15] CAO Fang,YU Xiu‐mei,GUO Juan‐li,HE Min,PAN Kang‐cheng. Screening of a novel bioflocculant‐producing strain of Bacillus sp . and research for its flocculation characteristics[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(6): 617-623.