Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (2): 295-307    DOI: 10.3785/j.issn.1008-9209.2023.10.081
研究论文     
烟草BTB/POZ蛋白家族的鉴定及其在抗马铃薯Y病毒中的作用
张劭文1(),赵天伦1,2,3,肖钦之4(),祝水金1,2,3,陈进红1,2,3()
1.浙江大学农业与生物技术学院,浙江 杭州 310058
2.浙江大学海南研究院,海南 三亚 572025
3.浙江省作物种质资源重点实验室,浙江 杭州 310058
4.湖南省烟草公司永州市公司,湖南 永州 425000
Identification of BTB/POZ protein family in Nicotiana tabacum and its role in resistance to potato virus Y (PVY)
Shaowen ZHANG1(),Tianlun ZHAO1,2,3,Qinzhi XIAO4(),Shuijin ZHU1,2,3,Jinhong CHEN1,2,3()
1.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Hainan Institute of Zhejiang University, Sanya 572025, Hainan, China
3.Zhejiang Key Laboratory of Crop Germplasm Resources, Hangzhou 310058, Zhejiang, China
4.Yongzhou Branch of Hunan Tobacco Company, Yongzhou 425000, Hunan, China
 全文: PDF(4503 KB)   HTML
摘要:

马铃薯Y病毒(potato virus Y, PVY)侵染烟草(Nicotiana tabacum)会引起烟草脉带病,造成烟叶品质下降。broad complex, tramtrack, and bric-à-brac/pox virus and zinc finger(BTB/POZ)是动植物体内广泛存在的蛋白质家族,在植物生长和发育的各个环节都起着非常重要的作用。本研究鉴定到90个烟草BTB/POZ家族蛋白,对应71个基因。在这些蛋白质的序列中,识别到9种保守基序(motif),并根据其出现顺序将BTB/POZ家族成员划分至6个亚家族。结构域分析表明,BTB/POZ同一亚家族成员的结构域具有一致性。对BTB/POZ蛋白的三维构象进行预测发现,所有亚家族成员结构都以α螺旋为主,同一亚家族成员的三维构象相似。烟草品种K326和突变体M867(抗PVY)的BTB/POZ家族基因表达模式分析显示,叶片接种PVY后,NtBTB2MNtBTB2KNtBTB2LNtBTB6E基因的表达丰度显著增加,这可能与烟草M867对PVY的抗性较强有关。顺式作用元件分析显示,NtBTB2KNtBTB2LNtBTB2MNtBTB6E基因的上游2 000 bp区域内含有若干逆境响应相关元件,包括水杨酸响应元件、MYB结合位点等,可能和这些基因的上调表达有关。本研究为BTB/POZ蛋白的功能研究提供了理论依据,为烟草抗病育种提供了一定参考。

关键词: 烟草BTB/POZ家族保守基序顺式作用元件    
Abstract:

The infection of Nicotiana tabacum with potato virus Y (PVY) can cause tobacco vein disease, leading to a decrease in the tobacco leaf quality. The broad complex, tramtrack, and bric-à-brac/pox virus and zinc finger (BTB/POZ) family exists widely in plants and animals. It plays a very important role in various stages of plant growth and development. In this study, 90 proteins in the BTB/POZ family of N. tabacum were identified, corresponding to 71 genes. Among these protein sequences, nine conserved motifs were identified, and the members of the BTB/POZ family were divided into six subfamilies according to the order of their appearance. Domain analysis showed that the domains of members of the same subfamily in BTB/POZ are consistent. The three-dimensional (3D) conformation of the BTB/POZ protein was predicted based on the amino acid sequence. All the members of the subfamily are mainly structured with α helixes, and the 3D conformations of members of the same subfamily are similar. Analysis of the BTB/POZ family gene expression patterns of N. tabacum K326 and mutant M867 (anti-PVY) showed that the expression levels of NtBTB2K, NtBTB2L, NtBTB2M and NtBTB6E increased significantly after inoculation with PVY, which may be related to the strong resistance of N. tabacum M867 to PVY. Cis-acting element analysis showed that the 2 000 bp upstream region of NtBTB2K, NtBTB2L, NtBTB2M and NtBTB6E contained several stress responsive elements, including TCA-element and MYB-binding site, which may be related to the upregulated expression of these genes. This study provides a theoretical basis for the study of BTB/POZ protein function, and provides a reference for disease resistance of tobacco breeding.

Key words: Nicotiana tabacum    BTB/POZ family    conserved motif    cis-acting element
收稿日期: 2023-10-08 出版日期: 2024-04-25
CLC:  S330  
基金资助: 国有企业委托项目(K横20200424)
通讯作者: 肖钦之,陈进红     E-mail: 22116179@zju.edu.cn;xwiao@126.com;jinhongchen@zju.edu.cn
作者简介: 张劭文(https://orcid.org/0009-0001-2804-7375),E-mail:22116179@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张劭文
赵天伦
肖钦之
祝水金
陈进红

引用本文:

张劭文,赵天伦,肖钦之,祝水金,陈进红. 烟草BTB/POZ蛋白家族的鉴定及其在抗马铃薯Y病毒中的作用[J]. 浙江大学学报(农业与生命科学版), 2024, 50(2): 295-307.

Shaowen ZHANG,Tianlun ZHAO,Qinzhi XIAO,Shuijin ZHU,Jinhong CHEN. Identification of BTB/POZ protein family in Nicotiana tabacum and its role in resistance to potato virus Y (PVY). Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(2): 295-307.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.10.081        https://www.zjujournals.com/agr/CN/Y2024/V50/I2/295

基因名称

Gene name

引物序列(5→3

Primer sequence (5→3)

NtActin-7

F: TCAGGAAGGACCTCTACGGT

R: ATGTGCTAAGGGATGCGAGG

NtBTB2L

F: ACTTTGCCACCGATTTTAATG

R: TAGAATGTGCTGGAATGCG

NtBTB2K/NtBTB2M

F: ATGCACTGAAGGATGCACCA

R: ATAAGGAGCTGGACGCCTTG

NtBTB6E

F: ATGGAGGCCAGCAGCAGC

R: TCATGTGGAAGCAACCATTTCC

表1  qRT-PCR引物序列
图1  拟南芥、番茄和烟草中BTB/POZ家族成员的进化树

基序

Motif

蛋白质序列

Protein sequence

宽度

Width

位点

Site

E

E-value

基序1 Motif 1FHAHKCILAARSPVFRKLFSG21881.4×10-738
基序3 Motif 3SKTIPINDVEYEAFKALLNFJYSGKLSEE29827.1×10-661
基序3 Motif 3LDLLAAADKFGVPQLKRLCEK21712.0×10-473
基序4 Motif 4KVHSHFDRALESGPYTLKYRGSMWGYKRFF30191.0×10-361
基序5 Motif 5FTVGGYDWAIYFYPDGKNIEDNSTYVSVFIALASEGTDVRA41145.3×10-435
基序6 Motif 6ALDSDDVELVKLLLMEEGLNLDEAIALHYAVEYCSREVVKELLELGAADV50182.0×10-492
基序7 Motif 7GRVYSQAFHLGGQGFFLSAHCNMDQQSSFHCFGLFLGMQEK41111.4×10-379
基序8 Motif 8FKAVMATEGFKHLEESDPRLELEJLQSVAMV31431.6×10-319
基序9 Motif 9EYVSKYKGNYTFTGGKAVGYRNLFGIPWTAFMAEDSIYFIN41181.8×10-390
表2  烟草BTB/POZ家族中鉴定到的9种保守基序
图2  烟草BTB/POZ家族中9种基序的保守程度每个位点上字母堆积的总高度表示基序在该位置上的保守程度。字母堆中单个字母的高度表示这一位点上该氨基酸的相对频率。
图3  烟草BTB/POZ家族中保守基序的分布
图4  烟草BTB/POZ家族中结构域的分布
图5  烟草BTB/POZ家族基因表达模式聚类热图K326_PVY、M867_PVY分别表示接种PVY的烟草K326和突变体M867。
图6  BTB/POZ家族差异基因的相对表达量短栅上不同小写字母表示在P<0.05水平差异有统计学意义。
图7  烟草BTB/POZ蛋白的三维构象预测红色部分指示该蛋白质的N端,蓝紫色部分指示蛋白质的C端。在部分三维构象几乎完全一致的蛋白质中,仅选取第1个蛋白质进行三维构象展示。

基因名称

Gene name

顺式作用元件

Cis-acting element

序列

Sequence

位置

Position/bp

宽度

Width/bp

所在DNA链

Located DNA chain

NtBTB2KMYB结合位点CAACAG-1 8626
NtBTB2L水杨酸响应元件CCATCTTTTT-2539+
NtBTB2LMYB结合位点CAACAG-1 8656
NtBTB2MMYB结合位点CAACAG-1 8656
NtBTB6EMYB结合位点CAACAG-7486+
NtBTB6EMYB结合位点CAACAG-1 1046
NtBTB6E防御和胁迫响应元件GTTTTCTTAC-4069+
NtBTB6E水杨酸响应元件CCATCTTTTT-5069
表3  烟草中高表达BTB/POZ家族基因的顺式作用元件
1 吴雪慧,吕若辰,王克敏,等.贵州烟区产业综合体发展模式研究[J].农业与技术,2022,42(17):166-171. DOI:10.19754/j.nyyjs.20220915040
WU X H, LÜ R C, WANG K M, et al. Research on the development model of industrial complex in Guizhou tobacco areas[J]. Agriculture and Technology, 2022, 42(17): 166-171. (in Chinese)
doi: 10.19754/j.nyyjs.20220915040
2 NAIDU S K. Tobacco: production, chemistry and technology[J]. Crop Science, 2001, 41(1): 255. DOI: 10.2135/cropsci2001.411255x
doi: 10.2135/cropsci2001.411255x
3 STOGIOS P J, DOWNS G S, JAUHAL J J S, et al. Sequence and structural analysis of BTB domain proteins[J]. Genome Biology, 2005, 6(10): R82. DOI: 10.1186/gb-2005-6-10-r82
doi: 10.1186/gb-2005-6-10-r82
4 ZOLLMAN S, GODT D, PRIVÉ G G, et al. The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila [J]. PNAS, 1994, 91(22): 10717-10721.
5 HARRISON S D, TRAVERS A A. The tramtrack gene encodes a Drosophila finger protein that interacts with the ftz trans-criptional regulatory region and shows a novel embryonic expression pattern[J]. The EMBO Journal, 1990, 9: 207-216.
6 GODT D, COUDERC J L, CRAMTON S E, et al. Pattern formation in the limbs of Drosophila: bric à brac is expressed in both a gradient and a wave-like pattern and is required for specification and proper segmentation of the tarsus[J]. Development, 1993, 119(3): 799-812.
7 SCOFIELD M, KORUTLA L, JACKSON T, et al. Nucleus accumbens 1, a pox virus and zinc finger/bric-a-brac tramtrack broad protein binds to TAR DNA-binding protein 43 and has a potential role in amyotrophic lateral sclerosis[J]. Neuroscience, 2012, 227: 44-54. DOI: 10.1016/j.neuro-science.2012.09.043
doi: 10.1016/j.neuro-science.2012.09.043
8 XU L, WEI Y, REBOUL J, et al. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3[J]. Nature, 2003, 425(6955): 316-321. DOI: 10.1038/nature01985
doi: 10.1038/nature01985
9 PINTARD L, WILLIS J H, WILLEMS A, et al. The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase[J]. Nature, 2003, 425(6955): 311-316. DOI: 10.1038/nature01959
doi: 10.1038/nature01959
10 AN J P, LIU Y J, ZHANG X W, et al. Dynamic regulation of anthocyanin biosynthesis at different light intensities by the BT2-TCP46-MYB1 module in apple[J]. Journal of Experi-mental Botany, 2020, 71(10): 3094-3109. DOI: 10.1093/jxb/eraa056
doi: 10.1093/jxb/eraa056
11 AN J P, ZHANG X W, YOU C X, et al. MdWRKY40 promotes wounding-induced anthocyanin biosynthesis in association with MdMYB1 and undergoes MdBT2-mediated degradation[J]. New Phytologist, 2019, 224(1): 380-395. DOI: 10.1111/nph.16008
doi: 10.1111/nph.16008
12 JULIAN J, COEGO A, LOZANO-JUSTE J, et al. The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation[J]. PNAS, 2019, 116(31): 15725-15734. DOI: 10.1073/pnas.1908677116
doi: 10.1073/pnas.1908677116
13 LECHNER E, LEONHARDT N, EISLER H, et al. MATH/BTB CRL3 receptors target the homeodomain-leucine zipper ATHB6 to modulate abscisic acid signaling[J]. Developmental Cell, 2011, 21(6): 1116-1128. DOI: 10.1016/j.devcel.2011.10.018
doi: 10.1016/j.devcel.2011.10.018
14 庄晓峰,董海涛,李德葆.水稻抗病性反应的cDNA微阵列分析及一个新基因OsBTB的发现[J].植物病理学报,2005,35(3):221-228. DOI:10.13926/j.cnki.apps.2005.03.006
ZHUANG X F, DONG H T, LI D B. Analysis of cDNA microarrays of resistant responses and discovery of a novel gene contained BTB/POZ domain in resistant rice[J]. Acta Phytopathologica Sinica, 2005, 35(3): 221-228. (in Chinese with English abstract)
doi: 10.13926/j.cnki.apps.2005.03.006
15 CHAHTANE H, ZHANG B, NORBERG M, et al. LEAFY activity is post-transcriptionally regulated by BLADE ON PETIOLE2 and CULLIN3 in Arabidopsis [J]. New Phytologist, 2018, 220(2): 579-592. DOI: 10.1111/nph.15329
doi: 10.1111/nph.15329
16 MALNOY M, JIN Q, BOREJSZA-WYSOCKA E E, et al. Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus×domestica [J]. Molecular Plant-Microbe Interactions, 2007, 20(12): 1568-1580. DOI: 10.1094/MPMI-20-12-1568
doi: 10.1094/MPMI-20-12-1568
17 YOCGO R E, CREISSEN G, KUNERT K, et al. Two different banana NPR1-like coding sequences confer similar protection against pathogens in Arabidopsis [J]. Tropical Plant Biology, 2012, 5(4): 309-316. DOI: 10.1007/s12042-012-9112-y
doi: 10.1007/s12042-012-9112-y
18 STOGIOS P J, PRIVÉ G G. The BACK domain in BTB-kelch proteins[J]. Trends in Biochemical Sciences, 2004, 29(12): 634-637. DOI: 10.1016/j.tibs.2004.10.003
doi: 10.1016/j.tibs.2004.10.003
19 ROBERTS D, PEDMALE U V, MORROW J, et al. Modula-tion of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-RING E3 ubiquitin ligase CRL3NPH3 [J]. The Plant Cell, 2011, 23(10): 3627-3640. DOI: 10.1105/tpc.111.087999
doi: 10.1105/tpc.111.087999
20 MISRA A, MCKNIGHT T D, MANDADI K K. Bromo-domain proteins GTE9 and GTE11 are essential for specific BT2-mediated sugar and ABA responses in Arabidopsis thaliana [J]. Plant Molecular Biology, 2018, 96(4/5): 393-402. DOI: 10.1007/s11103-018-0704-2
doi: 10.1007/s11103-018-0704-2
21 WANG X F, AN J P, LIU X, et al. The nitrate-responsive protein MdBT2 regulates anthocyanin biosynthesis by interacting with the MdMYB1 transcription factor[J]. Plant Physiology, 2018, 178(2): 890-906. DOI: 10.1104/pp.18.00244
doi: 10.1104/pp.18.00244
22 RYALS J, WEYMANN K, LAWTON K, et al. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor IκB[J]. The Plant Cell, 1997, 9(3): 425-439.
23 WU Y, ZHANG D, CHU J Y, et al. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid[J]. Cell Reports, 2012, 1(6): 639-647. DOI: 10.1016/j.celrep.2012.05.008
doi: 10.1016/j.celrep.2012.05.008
24 WANG W, WITHERS J, LI H, et al. Structural basis of salicylic acid perception by Arabidopsis NPR proteins[J]. Nature, 2020, 586(7828): 311-316. DOI: 10.1038/s41586-020-2596-y
doi: 10.1038/s41586-020-2596-y
25 ZHOU F, ZHANG K, ZHENG X, et al. BTB and TAZ domain protein BT4 positively regulates the resistance to Botrytis cinerea in Arabidopsis [J]. Plant Signaling & Behavior, 2022, 17(1): 2104003. DOI: 10.1080/15592324.2022.2104003
doi: 10.1080/15592324.2022.2104003
26 TRAN L S P, NAKASHIMA K, SAKUMA Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 pro-moter[J]. The Plant Cell, 2004, 16(9): 2481-2498. DOI: 10.1105/tpc.104.022699
doi: 10.1105/tpc.104.022699
27 XIAO Q Z, CUI G X, CHEN Y R, et al. Combined analysis of mRNA and miRNA transcriptomes reveals the regulatory mechanism of PVY resistance in tobacco[J]. Industrial Crops and Products, 2022, 176: 114322. DOI: 10.1016/j.indcrop.2021.114322
doi: 10.1016/j.indcrop.2021.114322
28 EDWARDS K D, FERNANDEZ-POZO N, DRAKE-STOWE K, et al. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency[J]. BMC Genomics, 2017, 18: 448. DOI: 10.1186/s12864-017-3791-6
doi: 10.1186/s12864-017-3791-6
29 CHERN M, FITZGERALD H A, CANLAS P E, et al. Over-expression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light[J]. Molecular Plant-Microbe Interactions, 2005, 18(6): 511-520. DOI: 10.1094/MPMI-18-0511
doi: 10.1094/MPMI-18-0511
30 REN Y R, ZHAO Q, YANG Y Y, et al. Interaction of BTB-TAZ protein MdBT2 and DELLA protein MdRGL3a regulates nitrate-mediated plant growth[J]. Plant Physiology, 2021, 186(1): 750-766. DOI: 10.1093/plphys/kiab065
doi: 10.1093/plphys/kiab065
31 JI X L, LI H L, QIAO Z W, et al. The BTB protein MdBT2 recruits auxin signaling components to regulate adventitious root formation in apple[J]. Plant Physiology, 2022, 189(2): 1005-1020. DOI: 10.1093/plphys/kiac084
doi: 10.1093/plphys/kiac084
32 陈西霞.苹果BTB蛋白MdBT2与MdNAC1互作负调控铁离子稳态[D].泰安:山东农业大学,2022.
CHEN X X. BTB protein MdBT2 interacts with MdNAC1 negatively regulates iron homeostasis in apple[D]. Tai’an: Shandong Agricultural University, 2022. (in Chinese with English abstract)
[1] 都慧,王晓伟,刘树生. 唾液效应因子BtArmet靶向NtWRKY51调控烟草防御烟粉虱的分子机制[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 753-760.
[2] 钟培阁,周也莹,张彦,石屹,郭焱,李保国,马韫韬. 基于标志点法的烟草叶形提取与判别[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 533-542.
[3] 贾奥博,董天浩,张彦,朱冰琳,孙延国,吴元华,石屹,马韫韬,郭焱. 基于三维点云和集成学习的大田烟草株型特征识别[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 393-402.
[4] 许抗抗,丁天波,严毅,李灿,杨文佳. CO2气调胁迫下烟草甲谷胱甘肽S-转移酶基因的表达分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 599-607.
[5] 杨志丽, 郭传龙, 刘蕾, 武孔焕, 王琳, 李昆志, 赵艳, 陈丽梅. 在烟草中过量表达大豆SGF14a增强转基因烟草对铝胁迫的耐受性[J]. 浙江大学学报(农业与生命科学版), 2015, 41(03): 285-292.
[6] 周佳萍, 杨春元, 吴春, 王仁刚, 史跃伟, 谢升东, 王志红, 徐海明, 任学良. 烟草核心种质库构建及遗传多样性研究(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 440-450.
[7] 高玉龙1, 桂毅杰2, 肖炳光1,薄世平2, 严广号2, 樊龙江2. 烟草MITE位点间多态性 (IMP) 标记开发及其遗传作图应用[J]. 浙江大学学报(农业与生命科学版), 2012, 38(6): 655-661.
[8] 许露露,潘文杰,张国平. 烟草自毒效应的品种间差异研究(英文)[J]. 浙江大学学报(农业与生命科学版), 2012, 38(2): 119-126.
[9] 程维舜,徐秋芳,黎飞,徐幼平,蔡新忠. 适于烟草脆裂病毒诱导的本氏烟基因沉默分析的对照载体构建(英文)[J]. 浙江大学学报(农业与生命科学版), 2012, 38(1): 10-20.
[10]  姜磊 吴建祥 周雪平. 与烟草曲茎病毒相伴随的DNAβ的βC1基因原核表达及蛋白的单抗制备[J]. 浙江大学学报(农业与生命科学版), 2008, 34(2): 132-136.
[11] 崔红 慕平利 李雪君 刘梦林 王哲 . Ri质粒介导fps基因对烟草的转化及表达 [J]. 浙江大学学报(农业与生命科学版), 2007, 33(4): 355-359.
[12] 潘滨 吴建祥 李桂新等. 烟草曲茎病毒复制相关蛋白基因原核表达条件优化[J]. 浙江大学学报(农业与生命科学版), 2007, 33(1): 24-28.
[13] 代飞  周伟军. 自然挂枝法在烤烟良种繁育中的应用探讨[J]. 浙江大学学报(农业与生命科学版), 2005, 31(6): 701-704.
[14] 陈青  薛朝阳  吴俊杰  凌建群  周雪平. 烟草花叶病毒移动蛋白基因转化烟草及在转基因烟草中的表达[J]. 浙江大学学报(农业与生命科学版), 2001, 27(2): 119-123.
[15] 李凡 周雪平 陈海如 李德葆. 云南省烟草花叶病毒和黄瓜花叶病毒外壳蛋白基因克隆及序列分析[J]. 浙江大学学报(农业与生命科学版), 2000, 26(3): 261-265.