Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (4): 533-542    DOI: 10.3785/j.issn.1008-9209.2021.07.091
农业工程     
基于标志点法的烟草叶形提取与判别
钟培阁1(),周也莹1,张彦2,石屹2,郭焱1,李保国1,马韫韬1()
1.中国农业大学土地科学与技术学院,北京 100193
2.中国农业科学院烟草研究所,农业农村部烟草生物学与加工重点实验室,山东 青岛 266101
Extraction and discrimination of tobacco leaf shape based on landmark method
Peige ZHONG1(),Yeying ZHOU1,Yan ZHANG2,Yi SHI2,Yan GUO1,Baoguo LI1,Yuntao MA1()
1.College of Land Science and Technology, China Agricultural University, Beijing 100193, China
2.Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong, China
 全文: PDF(3187 KB)   HTML
摘要:

本研究采用标志点法并基于39个烟草品种叶片图像提取叶形信息,比较分析了不同生长时期、不同品种和不同叶位间的叶形差异。采用主成分分析法实现数据降维并对叶形差异进行可视化表达,采用决策树、随机森林和支持向量机法对不同类型叶形进行判别分析。主成分分析结果表明,烟草叶片间差异的主要来源分别为叶片宽和最大宽位置、叶片扭转程度以及叶柄部3方面,分别占总差异的42.7%、21.3%、10.7%。叶形判别结果表明,采用标志点数据的判别精度为52%~62%,而采用常用叶形指标的判别精度为51%~54%。上部叶、中部叶的判别精度高于下部叶10%左右,具有更明显的品种特征。团棵期叶片由于处于营养生长期,判别精度低于开花期叶片近10%。去除12类非典型品种后,标志点法判别精度上升至77%。标志点数据在叶形信息提取上的效果优于常用叶形指标,为叶形信息的自动化提取提供了新的思路。

关键词: 几何形态学标志点法烟草叶形机器学习    
Abstract:

The shape information of leaves from 39 tobacco varieties was extracted by using landmark method. The differences in leaf shapes were compared and analyzed among different varieties and different leaf positions at different growth stages. Principal component analysis was used to reduce the dimensionality of the data. The sources of differences were visualized among different leaf shapes. Decision tree, random forest and support vector machine were used to perform discriminant analysis on tobacco leaf shapes. The results of the principal component analysis showed that the first three principal components accounted for 42.7%, 21.3% and 10.7% of the total differences in tobacco leaves at the flowering stage, which were characterized by leaf width and the maximum width position, leaf torsion, and petiole size, respectively. The discriminant results of tobacco leaf shape based on machine learning showed that the discriminant accuracy based on landmark data was 52%-62%, while the value was 51%-54% for common leaf shape indicators. The discriminant accuracy on superior or medial leaves was about 10% higher than that of inferior leaves, representing more obvious characteristics of variety. Due to the growth of the leaves, the discriminant accuracy of the leaves at rosette stage was nearly 10% lower than flowering stage. The discriminant accuracy of landmark method increased to 77% after removing 12 atypical varieties. The effect of the landmark method on leaf shape information extraction is better than the common leaf shape indicators, which provides a new idea for the automated extraction of leaf shape information.

Key words: geometric morphometrics    landmark method    tobacco    leaf shape    machine learning
收稿日期: 2021-07-09 出版日期: 2022-09-03
CLC:  S 24  
基金资助: 中国烟草总公司山东省公司重点项目“山东‘中棵烟’特征及形成机制研究”(201803)
通讯作者: 马韫韬     E-mail: zhongpg1998@163.com;yuntao.ma@cau.edu.cn
作者简介: 钟培阁(https://orcid.org/0000-0002-1743-5698),E-mail:zhongpg1998@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
钟培阁
周也莹
张彦
石屹
郭焱
李保国
马韫韬

引用本文:

钟培阁,周也莹,张彦,石屹,郭焱,李保国,马韫韬. 基于标志点法的烟草叶形提取与判别[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 533-542.

Peige ZHONG,Yeying ZHOU,Yan ZHANG,Yi SHI,Yan GUO,Baoguo LI,Yuntao MA. Extraction and discrimination of tobacco leaf shape based on landmark method. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 533-542.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.07.091        https://www.zjujournals.com/agr/CN/Y2022/V48/I4/533

图1  烟草品种与对应叶形分类*表示非典型类烟草品种。
图2  烟草叶片图像获取与处理流程图
图3  烟草叶片标志点的选取及普氏叠印分析法结果示意图
图4  开花期不同叶形、叶位以及两者互作效应在各标志点的 F 值
图5  开花期第一主成分结果对比A.可视化第一主成分结果;B.典型品种叶片平均形状;C.各类别叶片第一主成分值。
图6  开花期第二主成分结果对比A.可视化第二主成分结果;B.典型品种叶片平均形状。
图7  开花期第三主成分结果对比A.可视化第三主成分结果;B.典型品种叶片平均形状。

叶位

Leaf position

叶形指标

Leaf shape indicator

机器学习算法

Machine learning method

不同指标均值

Means of

different indicators

决策树

DT

随机森林RF支持向量机SVM

全部叶片

All leaves

常用指标

Commonly used indicator

0.520.510.540.52
标志点 Landmark0.520.600.620.58

典型品种标志点

Typical variety landmark

0.640.690.730.69

上部叶

Superior leaves

常用指标

Commonly used indicator

0.580.550.590.57
标志点 Landmark0.600.650.670.64

典型品种标志点

Typical variety landmark

0.690.750.770.74

中部叶

Medial leaves

常用指标

Commonly used indicator

0.600.610.610.61
标志点 Landmark0.610.650.640.63

典型品种标志点

Typical variety landmark

0.690.740.740.72

下部叶

Inferior leaves

常用指标

Commonly used indicator

0.520.540.540.53
标志点 Landmark0.460.540.580.53

典型品种标志点

Typical variety landmark

0.670.680.710.68
表1  基于机器学习的开花期烟草叶形判别精度
1 张宁,刘文萍.基于图像分析的植物叶片识别技术综述[J].计算机应用研究,2011,28(11):4001-4007. DOI:10.3969/j.issn.1001-3695.2011.11.001
ZHANG N, LIU W P. Plant leaf recognition technology based on image analysis[J]. Application Research of Computers, 2011, 28(11): 4001-4007. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-3695.2011.11.001
2 王晓峰,黄德双,杜吉祥,等.叶片图像特征提取与识别技术的研究[J].计算机工程与应用,2006(3):190-193. DOI:10.3321/j.issn:1002-8331.2006.03.056
WANG X F, HUANG D S, DU J X, et al. Feature extraction and recognition for leaf images[J]. Computer Engineering and Applications, 2006(3): 190-193. (in Chinese with English abstract)
doi: 10.3321/j.issn:1002-8331.2006.03.056
3 WÄLDCHEN J, MÄDER P. Plant species identification using computer vision techniques: a systematic literature review[J]. Archives of Computational Methods in Engineering, 2018, 25(2): 507-543. DOI:10.1007/s11831-016-9206-z
doi: 10.1007/s11831-016-9206-z
4 LEE S H, CHAN C S, MAYO S J, et al. How deep learning extracts and learns leaf features for plant classification[J]. Pattern Recognition, 2017, 71: 1-13. DOI:10.1016/j.patcog.2017.05.015
doi: 10.1016/j.patcog.2017.05.015
5 LARESE M G, NAMÍAS R, CRAVIOTTO R M, et al. Automatic classification of legumes using leaf vein image features[J]. Pattern Recognition, 2014, 47(1): 158-168. DOI:10.1016/j.patcog.2013.06.012
doi: 10.1016/j.patcog.2013.06.012
6 MUNISAMI T, RAMSURN M, KISHNAH S, et al. Plant leaf recognition using shape features and colour histogram with k-nearest neighbour classifiers[J]. Procedia Computer Science, 2015, 58: 740-747. DOI:10.1016/j.procs.2015.08.095
doi: 10.1016/j.procs.2015.08.095
7 郑一力,钟刚亮,王强,等.基于多特征降维的植物叶片识别方法[J].农业机械学报,2017,48(3):30-37. DOI:10.6041/j.issn.1000-1298.2017.03.004
ZHENG Y L, ZHONG G L, WANG Q, et al. Method of leaf identification based on multi-feature dimension reduction[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 30-37. (in Chinese with English abstract)
doi: 10.6041/j.issn.1000-1298.2017.03.004
8 白明,杨星科,李静,等.几何形态学:关于形态定量比较的科学计算工具[J].科学通报,2014,59(10):887-894. DOI:10.1360/972012-1561
BAI M, YANG X K, LI J, et al. Geometric morphometrics, a super scientific computing tool in morphology comparison[J]. Chinese Science Bulletin, 2014, 59(10): 887-894. (in Chinese with English abstract)
doi: 10.1360/972012-1561
9 刘媛,吕佳,宋佳,等.基于几何形态测量学的植物鉴定方法[J].植物科学学报,2017,35(6):894-899. DOI:10.11913/PSJ.2095-0837.2017.60894
LIU Y, LÜ J, SONG J, et al. Plant species delimitation method based on geometric morphometrics[J]. Plant Science Journal, 2017, 35(6): 894-899. (in Chinese with English abstract)
doi: 10.11913/PSJ.2095-0837.2017.60894
10 CHITWOOD D H, OTONI W C. Morphometric analysis of Passiflora leaves: the relationship between landmarks of the vasculature and elliptical Fourier descriptors of the blade[J]. GigaScience, 2017, 6(1): giw008. DOI:10.1093/gigascience/giw008
doi: 10.1093/gigascience/giw008
11 FELDMANN M J, HARDIGAN M A, FAMULA R A, et al. Multi-dimensional machine learning approaches for fruit shape phenotyping in strawberry[J]. GigaScience, 2020, 9(5): giaa030. DOI:10.1093/gigascience/giaa030
doi: 10.1093/gigascience/giaa030
12 LIU Y, LI Y J, SONG J L, et al. Geometric morphometric analyses of leaf shapes in two sympatric Chinese oaks: Quercus dentata Thunberg and Quercus aliena Blume (Fagaceae)‍[J]. Annals of Forest Science, 2018, 75(4): 90. DOI:10.1007/s13595-018-0770-2
doi: 10.1007/s13595-018-0770-2
13 WOEBBECKE D M, MEYER G E, VON BARGEN K, et al. Color indices for weed identification under various soil, residue, and lighting conditions[J]. Transactions of the ASAE, 1995, 38(1): 259-269. DOI:10.13031/2013.27838
doi: 10.13031/2013.27838
14 OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. DOI:10.1109/tsmc.1979.4310076
doi: 10.1109/tsmc.1979.4310076
15 FIRMANSYAH Z, HERDIYENI Y, SILALAHI B P, et al. Landmark analysis of leaf shape using polygonal approximation[C]. IOP Conference Series: Earth and Environmental Science, 2016, 31(1): 012018. DOI:10.1088/1755-1315/31/1/012018
doi: 10.1088/1755-1315/31/1/012018
16 ROHLF F J, SLICE D. Extensions of the Procrustes method for the optimal superimposition of landmarks[J]. Systematic Zoology, 1990, 39(1): 40-59. DOI:10.2307/2992207
doi: 10.2307/2992207
17 VISCOSI V, CARDINI A. Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners[J]. PLoS ONE, 2011, 6(10): e25630. DOI:10.1371/journal.pone.0025630
doi: 10.1371/journal.pone.0025630
18 DRYDEN I L. Shapes: Statistical Shape Analysis, with Application in R Package Version 1.2.5[CP]. Chichester, UK: Wiley, 2019.
19 柴宏红,邵科,于超,等.基于三维点云的甜菜根表型参数提取与根型判别‍[J].农业工程学报,2020,36(10):181-188. DOI:10.11975/j.issn.1002-6819.2020.10.022
CHAI H H, SHAO K, YU C, et al. Extraction of phenotypic parameters and discrimination of beet root types based on 3D point cloud[J]. Transactions of the CSAE, 2020, 36(10): 181-188. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2020.10.022
20 BREIMAN L, FRIEDMAN J H, OLSHEN R A, et al. Classification and Regression Trees[M]. New York, USA: Routledge, 2017. DOI:10.1201/9781315139470
doi: 10.1201/9781315139470
21 BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. DOI:10.1023/a:1010933404324
doi: 10.1023/a:1010933404324
22 CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. DOI:10.1007/bf00994018
doi: 10.1007/bf00994018
23 KLINGENBERG C P. MorphoJ: an integrated software package for geometric morphometrics[J]. Molecular Ecology Resources, 2011, 11(2): 353-357. DOI:10.1111/j.1755-0998.2010.02924.x
doi: 10.1111/j.1755-0998.2010.02924.x
24 MALOOF J N, NOZUE K, MUMBACH M R, et al. LeafJ: an ImageJ plugin for semi-automated leaf shape measurement[J]. Journal of Visualized Experiments, 2013(71): 50028. DOI:10.3791/50028
doi: 10.3791/50028
25 ADAMS D C, ROHLF F J, SLICE D E. A field comes of age: geometric morphometrics in the 21st century[J]. Hystrix, the Italian Journal of Mammalogy, 2013, 24(1): 7-14. DOI:10.4404/hystrix-24.1-6283
doi: 10.4404/hystrix-24.1-6283
26 招启柏,顾世梁,俞惠梅,等.烟草叶片生长的动态分析[J].中国烟草学报,2004,10(2):12-20. DOI:10.3321/j.issn:1004-5708.2004.02.003
ZHAO Q B, GU S L, YU H M, et al. A dynamic analysis of tobacco leaf growth[J]. Acta Tabacaria Sinica, 2004, 10(2): 12-20. (in Chinese with English abstract)
doi: 10.3321/j.issn:1004-5708.2004.02.003
27 MIGICOVSKY Z, LI M, CHITWOOD D H, et al. Morphometrics reveals complex and heritable apple leaf shapes[J]. Frontiers in Plant Science, 2018, 8: 2185. DOI:10.3389/fpls.2017.02185
doi: 10.3389/fpls.2017.02185
28 XIAO S F, CHAI H H, SHAO K, et al. Image-based dynamic quantification of aboveground structure of sugar beet in field[J]. Remote Sensing, 2020, 12(2): 269. DOI:10.3390/rs12020269
doi: 10.3390/rs12020269
[1] 贾奥博,董天浩,张彦,朱冰琳,孙延国,吴元华,石屹,马韫韬,郭焱. 基于三维点云和集成学习的大田烟草株型特征识别[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 393-402.
[2] 许抗抗,丁天波,严毅,李灿,杨文佳. CO2气调胁迫下烟草甲谷胱甘肽S-转移酶基因的表达分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 599-607.
[3] 杨志丽, 郭传龙, 刘蕾, 武孔焕, 王琳, 李昆志, 赵艳, 陈丽梅. 在烟草中过量表达大豆SGF14a增强转基因烟草对铝胁迫的耐受性[J]. 浙江大学学报(农业与生命科学版), 2015, 41(03): 285-292.
[4] 周佳萍, 杨春元, 吴春, 王仁刚, 史跃伟, 谢升东, 王志红, 徐海明, 任学良. 烟草核心种质库构建及遗传多样性研究(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 440-450.
[5] 高玉龙1, 桂毅杰2, 肖炳光1,薄世平2, 严广号2, 樊龙江2. 烟草MITE位点间多态性 (IMP) 标记开发及其遗传作图应用[J]. 浙江大学学报(农业与生命科学版), 2012, 38(6): 655-661.
[6] 许露露,潘文杰,张国平. 烟草自毒效应的品种间差异研究(英文)[J]. 浙江大学学报(农业与生命科学版), 2012, 38(2): 119-126.
[7] 程维舜,徐秋芳,黎飞,徐幼平,蔡新忠. 适于烟草脆裂病毒诱导的本氏烟基因沉默分析的对照载体构建(英文)[J]. 浙江大学学报(农业与生命科学版), 2012, 38(1): 10-20.
[8]  姜磊 吴建祥 周雪平. 与烟草曲茎病毒相伴随的DNAβ的βC1基因原核表达及蛋白的单抗制备[J]. 浙江大学学报(农业与生命科学版), 2008, 34(2): 132-136.
[9] 崔红 慕平利 李雪君 刘梦林 王哲 . Ri质粒介导fps基因对烟草的转化及表达 [J]. 浙江大学学报(农业与生命科学版), 2007, 33(4): 355-359.
[10] 潘滨 吴建祥 李桂新等. 烟草曲茎病毒复制相关蛋白基因原核表达条件优化[J]. 浙江大学学报(农业与生命科学版), 2007, 33(1): 24-28.
[11] 代飞  周伟军. 自然挂枝法在烤烟良种繁育中的应用探讨[J]. 浙江大学学报(农业与生命科学版), 2005, 31(6): 701-704.
[12] 陈青  薛朝阳  吴俊杰  凌建群  周雪平. 烟草花叶病毒移动蛋白基因转化烟草及在转基因烟草中的表达[J]. 浙江大学学报(农业与生命科学版), 2001, 27(2): 119-123.
[13] 李凡 周雪平 陈海如 李德葆. 云南省烟草花叶病毒和黄瓜花叶病毒外壳蛋白基因克隆及序列分析[J]. 浙江大学学报(农业与生命科学版), 2000, 26(3): 261-265.
[14] 郭兴启 温孚江 朱汉城. 烟草感染马铃薯Y病毒(PVY)后光合作用的变化规律[J]. 浙江大学学报(农业与生命科学版), 2000, 26(1): 75-78.