Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (2): 172-189    DOI: 10.3785/j.issn.1008-9209.2023.07.311
综述     
作物根际激发效应:调控农田土壤碳动态及助力碳中和的关键因素
郑维维(),何超,杨京平()
浙江大学环境与资源学院,浙江 杭州 310058
Rhizosphere priming effect of crops: a critical factor for regulating carbon dynamics in farming land and promoting carbon neutrality
Weiwei ZHENG(),Chao HE,Jingping YANG()
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
 全文: PDF(5975 KB)   HTML
摘要:

土壤碳是陆地碳库的重要组成部分,碳输入及输出、矿化与固定的动态平衡是实现碳中和的关键因素。根际激发效应(rhizosphere priming effect, RPE)是指活体植物的存在会显著影响植物-土壤系统碳动态,其微小变化都会影响宏观尺度上的土壤-大气碳动态。因此,作物RPE是调控农田土壤碳动态和碳中和的主导因子。本文通过文献回顾,首先阐述了农业实践过程中各种生物因素和非生物因素对作物RPE影响的研究现状;其次,归纳总结了当前作物RPE研究中的热点、难点,并分析其对土壤碳排放调控的意义,阐明了当前研究普遍存在案例特异性且缺乏普遍规律;最后,基于已有的研究提出农田生态系统中土壤碳调控和管理优化的潜在策略,为农业实践中有目的地调控作物RPE,在田间、种植模式及区域尺度上提出可能的方案指明了方向。本文可为生态农业实践中保障粮食安全的同时助力碳中和这一双赢方案提供理论参考。

关键词: 作物-土壤系统根际激发效应土壤有机碳粮食安全碳中和    
Abstract:

Soil carbon is an important component of the terrestrial carbon pool, and carbon dynamic balance of input and output, mineralization and immobilization are critical factors in achieving carbon neutrality. Rhizosphere priming effect (RPE) refers to the fact that the presence of living plants significantly affects the carbon dynamics in the plant-soil system, with minor changes affecting soil-atmosphere carbon dynamics. Therefore, the RPE of crops is a vital factor in regulating carbon dynamics and carbon neutrality in farming land. Through a literature review, this paper first summarized the current research status of the effects of various biotic and abiotic factors on the RPE of crops during agricultural practices. Second, this paper summarized the hotspots and challenges in the current studies on the RPE of crops and analyzed their significance to the regulation of soil carbon emissions, elucidating that the existing studies were generally case-specific and lack of universal patterns. Finally, potential strategies for soil carbon regulation and management in agroecosystems were proposed based on the existing studies. This study pointed out the direction for the purposeful regulation of the RPE of crops in agricultural practices and the possible schemes in the field, planting mode and regional scale. This paper can provide theoretical references for eco-agricultural practices to help achieve carbon neutrality as a win-win solution while guaranteeing food security.

Key words: crop-soil system    rhizosphere priming effect    soil organic carbon    food security    carbon neutrality
收稿日期: 2023-07-31 出版日期: 2024-04-25
CLC:  S154.4  
基金资助: 国家自然科学基金项目(31870419);国家重点研发计划项目(2016YFD0300203-4)
通讯作者: 杨京平     E-mail: 22014047@zju.edu.cn;jpyang@zju.edu.cn
作者简介: 郑维维(https://orcid.org/0009-0000-0428-1071),E-mail:22014047@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郑维维
何超
杨京平

引用本文:

郑维维,何超,杨京平. 作物根际激发效应:调控农田土壤碳动态及助力碳中和的关键因素[J]. 浙江大学学报(农业与生命科学版), 2024, 50(2): 172-189.

Weiwei ZHENG,Chao HE,Jingping YANG. Rhizosphere priming effect of crops: a critical factor for regulating carbon dynamics in farming land and promoting carbon neutrality. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(2): 172-189.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.07.311        https://www.zjujournals.com/agr/CN/Y2024/V50/I2/172

图1  1990—2015年全球各行业温室气体排放量(资料来源:美国环境保护署网站)温室气体排放量以CO2当量表示。
图2  根际激发效应相关中文文献数量逐年变化趋势(A)及各研究领域文献占比(B)
图3  根际激发效应相关中文文献发表机构分布情况(A)及关键词网络(B)图B中,节点表示关键词;节点大小表示关键词出现的次数;关键词参数阈值设置为2,即关键词至少出现2次;不同颜色代表不同聚类。
图4  根际激发效应相关英文文献数量近10年变化趋势

排名

Ranking

研究领域

Research field

国家

Country

机构

Affiliation

作者

Author

1

农业

Agriculture (163)

中国

China (128)

中国科学院

Chinese Academy of Sciences (125)

CHENG Weixin (44)
2

植物科学

Plant sciences (70)

美国

USA (88)

加州大学系统

University of California system (93)

Feike A DIJKSTRA (29)
3

环境科学-生态学

Environmental

sciences-ecology (62)

澳大利亚

Australia (44)

中国科学院大学

University of Chinese

Academy of Sciences (26)

ZHU Biao (22)
4

地质学

Geology (14)

德国

Germany (31)

悉尼大学

The University of Sydney (25)

Yakov KUZYAKOV (13)
5

微生物学

Microbiology (13)

法国

France (18)

北京大学

Peking University (20)

YIN Liming (13)
6

生物多样性保护

Biodiversity conservation (6)

瑞典

Sweden (16)

印第安纳大学系统

Indiana University system (16)

YIN Huajun (11)
7

林学

Forestry (6)

英国

UK (12)

法国国家农业食品与环境研究院

INRAE (13)

LU Jiayu (9)
8

水资源

Water resources (5)

苏格兰

Scotland (12)

法国国家科学研究中心

CNRS (11)

Richard P PHILLIPS (9)
9

科学技术及其他主题

Science technology and other

topics (3)

巴西

Brazil (8)

浙江大学

Zhejiang University (11)

Sebastien FONTAINE (8)
10

生物化学-分子生物学

Biochemistry-molecular

biology (2)

加拿大

Canada (8)

美国能源部

United States Department of Energy (10)

YANG Jingping (7)
表1  根际激发效应相关英文文献发文量排名前10的研究领域、国家、机构和作者
图5  根际激发效应相关英文文献关键词网络节点表示关键词;节点大小表示关键词出现的次数;关键词参数阈值设置为5,即关键词至少出现5次;不同颜色代表不同聚类。
图6  根际激发效应的调控机制假说及其助力碳中和的设想
1 陈丽红.碳达峰与碳中和背景下工业低碳发展分析[J].资源节约与环保,2023(6):114-117. DOI:10.16317/j.cnki.12-1377/x.2023.06.023
CHEN L H. Analysis of industrial low carbon development in the context of “carbon peak” and “carbon neutrality”[J]. Resources Economization & Environmental Protection, 2023(6): 114-117. (in Chinese)
doi: 10.16317/j.cnki.12-1377/x.2023.06.023
2 王元庆,李若彤.城市群交通碳达峰与碳中和研究综述与展望[J].交通运输研究,2021,7(5):2-9. DOI:10.16503/j.cnki.2095-9931.2021.05.001
WANG Y Q, LI R T. Review and prospects of carbon dioxide emissions peak and carbon neutrality in urban agglomeration traffic[J]. Transport Research, 2021, 7(5): 2-9. (in Chinese with English abstract)
doi: 10.16503/j.cnki.2095-9931.2021.05.001
83 ZHANG X, SHEN S W, XUE S Q, et al. Long-term tillage and cropping systems affect soil organic carbon components and mineralization in aggregates in semiarid regions[J]. Soil and Tillage Research, 2023, 231: 105742. DOI: 10.1016/j.still.2023.105742
doi: 10.1016/j.still.2023.105742
84 刘静萍,金晓斌,韩博,等.农业空间半自然生境内涵、特征与识别[J].生态学报,2022,42(22):9199-9212. DOI:10.5846/stxb202106121567
doi: 10.5846/stxb202106121567
3 朴世龙,何悦,王旭辉,等.中国陆地生态系统碳汇估算:方法、进展、展望[J].中国科学:地球科学,2022,52(6):1010-1020. DOI:10.1360/SSTe-2021-0197
PIAO S L, HE Y, WANG X H, et al. Estimation of China’s terrestrial ecosystem carbon sink: methods, progress and prospects[J]. Scientia Sinica (Terrae), 2022, 52(6): 1010-1020. (in Chinese)
doi: 10.1360/SSTe-2021-0197
4 曹珂,吴林强,王建强,等.我国海洋地质碳封存研究进展与展望[J].中国地质调查,2023,10(2):72-76. DOI:10.19388/j.zgdzdc.2023.02.09
CAO K, WU L Q, WANG J Q, et al. Progress and perspective of marine geological carbon storage in China[J]. Geological Survey of China, 2023, 10(2): 72-76. (in Chinese with English abstract)
doi: 10.19388/j.zgdzdc.2023.02.09
84 LIU J P, JIN X B, HAN B, et al. Connotation, characteristics and recognition of semi-natural habitats in agricultural space[J]. Acta Ecologica Sinica, 2022, 42(22): 9199-9212. (in Chinese with English abstract)
doi: 10.5846/stxb202106121567
85 谢花林,李波,王传胜,等.西部地区农业生态系统健康评价[J].生态学报,2005,25(11):3028-3036. DOI:10.3321/j.issn:1000-0933.2005.11.033
doi: 10.3321/j.issn:1000-0933.2005.11.033
5 乔丹,袁婉潼,柯水发,等.基于CiteSpace的国内外森林碳汇领域热点与前沿进展可视化分析[J].北京林业大学学报(社会科学版),2023,22(2):60-69. DOI:10.13931/j.cnki.bjfuss.2022131
QIAO D, YUAN W T, KE S F, et al. A visualization analysis of forest carbon sequestration based on CiteSpace[J]. Journal of Beijing Forestry University (Social Sciences), 2023, 22(2): 60-69. (in Chinese with English abstract)
doi: 10.13931/j.cnki.bjfuss.2022131
6 李紫晶,高翠萍,王忠武,等.中国草地固碳减排研究现状及其建议[J].草业学报,2023,32(2):191-200. DOI:10.11686/cyxb2022049
LI Z J, GAO C P, WANG Z W, et al. Research status and suggestions for grassland carbon sequestration and emission reduction in China[J]. Acta Prataculturae Sinica, 2023, 32(2): 191-200. (in Chinese with English abstract)
doi: 10.11686/cyxb2022049
7 中华人民共和国自然资源部.2022年中国自然资源统计公报[EB/OL]. (2023-04-12)[2023-05-06]. . DOI:10.3969/j.issn.1009-9654.2023.07.017
Ministry of Natural Resources of the People’s Republic of China. China’s Natural Resources Statistical Bulletin in 2022[EB/OL]. (2023-04-12)[2023-05-06]. (in Chinese)
doi: 10.3969/j.issn.1009-9654.2023.07.017
8 LUO L, WANG J X, LÜ J T, et al. Carbon sequestration strategies in soil using biochar: advances, challenges, and opportunities[J]. Environmental Science & Technology, 2023, 57(31): 11357-11372. DOI: 10.1021/acs.est.3c02620
doi: 10.1021/acs.est.3c02620
9 FRIEDLINGSTEIN P, JONES M W, O’SULLIVAN M, et al. Global carbon budget 2021[J]. Earth System Science Data, 2022, 14(4): 1917-2005. DOI: 10.5194/essd-14-1917-2022
doi: 10.5194/essd-14-1917-2022
10 PAUSTIAN K, LEHMANN J, OGLE S, et al. Climate-smart soils[J]. Nature, 2016, 532(7597): 49-57. DOI: 10.1038/nature17174
doi: 10.1038/nature17174
11 TUBIELLO F N, KARL K, FLAMMINI A, et al. Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems[J]. Earth System Science Data, 2022, 14(4): 1795-1809. DOI: 10.5194/essd-14-1795-2022
doi: 10.5194/essd-14-1795-2022
12 贾根锁.IPCC《气候变化与土地特别报告》对陆气相互作用的新认知[J].气候变化研究进展,2020,16(1):9-16. DOI:10.12006/j.issn.1673-1719.2019.216
JIA G S. New understanding of land-climate interactions from IPCC Special Report on Climate Change and Land [J]. Climate Change Research, 2020, 16(1): 9-16. (in Chinese with English abstract)
doi: 10.12006/j.issn.1673-1719.2019.216
13 TIAN H Q, XU R T, CANADELL J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks[J]. Nature, 2020, 586(7828): 248-256. DOI: 10.1038/s41586-020-2780-0
doi: 10.1038/s41586-020-2780-0
14 ZHU C C, ZHONG W H, HAN C, et al. Driving factors of soil organic carbon sequestration under straw returning across China’s uplands[J]. Journal of Environmental Management, 2023, 335: 117590. DOI: 10.1016/j.jenvman.2023.117590
doi: 10.1016/j.jenvman.2023.117590
15 LIU B B, WU Q R, WANG F, et al. Is straw return-to-field always beneficial? Evidence from an integrated cost-benefit analysis[J]. Energy, 2019, 171: 393-402. DOI: 10.1016/j.energy.2019.01.031
doi: 10.1016/j.energy.2019.01.031
16 LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627. DOI: 10.1126/science.1097396
doi: 10.1126/science.1097396
17 KUPPUSAMY S, THAVAMANI P, MEGHARAJ M, et al. Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions[J]. Environment International, 2016, 87: 1-12. DOI: 10.1016/j.envint.2015.10.018
doi: 10.1016/j.envint.2015.10.018
18 CHENG W X, PARTON W J, GONZALEZ-MELER M A, et al. Synthesis and modeling perspectives of rhizosphere priming[J]. New Phytologist, 2014, 201(1): 31-44. DOI: 10.1111/nph.12440
doi: 10.1111/nph.12440
19 姚忠凯,刘丹,阴黎明,等.基于文献计量的根际激发效应研究进展与趋势[J].土壤通报,2023.
YAO Z K, LIU D, YIN L M, et al. Research progress and trend analysis of rhizosphere priming effect based on biblio-metrics method[J]. Chinese Journal of Soil Science, 2023. (in Chinese with English abstract)
20 HUO C F, LUO Y Q, CHENG W X. Rhizosphere priming effect: a meta-analysis[J]. Soil Biology & Biochemistry, 2017, 111: 78-84. DOI: 10.1016/j.soilbio.2017.04.003
doi: 10.1016/j.soilbio.2017.04.003
21 VAN ECK N J, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538. DOI: 10.1007/s11192-009-0146-3
doi: 10.1007/s11192-009-0146-3
22 孙昭安,朱彪,张译文,等.小麦和玉米生长对土壤碳输入和输出的贡献[J].农业环境科学学报,2021,40(10):2257-2265. DOI:10.11654/jaes.2021-0295
SUN Z A, ZHU B, ZHANG Y W, et al. Contributions of wheat and maize growth to soil carbon input and output[J]. Journal of Agro-Environment Science, 2021, 40(10): 2257-2265. (in Chinese with English abstract)
doi: 10.11654/jaes.2021-0295
23 莫朝阳,张鑫林,杨京平.根际激发效应对土壤有机碳累积及分解的影响[J].浙江大学学报(农业与生命科学版),2021,47(4):527-533. DOI:10.3785/j.issn.1008-9209.2020.10.162
MO C Y, ZHANG X L, YANG J P. Influence of rhizosphere priming effects on accumulation and decomposition of soil organic carbon[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 527-533. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2020.10.162
24 林森,肖谋良,江家彬,等.水分管理对水稻生长与根际激发效应的影响特征[J].环境科学,2021,42(2):988-995. DOI:10.13227/j.hjkx.202007177
LIN S, XIAO M L, JIANG J B, et al. Effect of water management on rice growth and rhizosphere priming effect in paddy soils[J]. Environmental Science, 2021, 42(2): 988-995. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.202007177
25 凌宁,荀卫兵,沈其荣.根际沉积碳与秸秆碳共存下作物与微生物氮素竞争机制及其调控[J].南京农业大学学报,2018,41(4):589-597. DOI:10.7685/jnau.201805045
LING N, XUN W B, SHEN Q R. Plant-microbial competition for nitrogen in rhizosphere under straw returning regime: mechanisms and manipulation[J]. Journal of Nanjing Agricul-tural University, 2018, 41(4): 589-597. (in Chinese with English abstract)
doi: 10.7685/jnau.201805045
26 KUZYAKOV Y. Review: factors affecting rhizosphere priming effects[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(4): 382-396. DOI: 10.1002/1522-2624(200208)165:4382:AID-JPLN382>3.0.CO;2- #
doi: 10.1002/1522-2624(200208)165:4382:AID-JPLN382>3.0.CO;2-
27 CUI H, CHEN P F, HE C, et al. Soil microbial community structure dynamics shape the rhizosphere priming effect patterns in the paddy soil[J]. Science of the Total Environment, 2023, 857: 159459. DOI: 10.1016/j.scitotenv.2022.159459
doi: 10.1016/j.scitotenv.2022.159459
28 ZHOU J, ZANG H D, LOEPPMANN S, et al. Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter[J]. Soil Biology & Biochemistry, 2020, 140: 107641. DOI: 10.1016/j.soilbio.2019.107641
doi: 10.1016/j.soilbio.2019.107641
29 REN T J, TANG S N, HAN T F, et al. Positive rhizospheric effects on soil carbon are primarily controlled by abiotic rather than biotic factors across global agroecosystems[J]. Geoderma, 2023, 430: 116337. DOI: 10.1016/j.geoderma.2023.116337
doi: 10.1016/j.geoderma.2023.116337
30 BUTTERLY C R, WANG X J, ARMSTRONG R D, et al. Elevated CO2 induced rhizosphere effects on the decomposition and N recovery from crop residues[J]. Plant and Soil, 2016, 408: 55-71. DOI: 10.1007/s11104-016-2911-4
doi: 10.1007/s11104-016-2911-4
31 DAN X Q, HE M Q, MENG L, et al. Strong rhizosphere priming effects on N dynamics in soils with higher soil N supply capacity: the ‘Matthew effect’ in plant-soil systems[J]. Soil Biology & Biochemistry, 2023, 178: 108949. DOI: 10.1016/j.soilbio.2023.108949
doi: 10.1016/j.soilbio.2023.108949
32 袁红朝,王久荣,刘守龙,等.稳定碳同位素技术在土壤根际激发效应研究中的应用[J].同位素,2018,31(1):57-63. DOI:10.7538/tws.2017.youxian.041
YUAN H Z, WANG J R, LIU S L, et al. Application of stable carbon isotope technique in the research of soil rhizosphere priming effect[J]. Journal of Isotopes, 2018, 31(1): 57-63. (in Chinese with English abstract)
doi: 10.7538/tws.2017.youxian.041
33 LU J Y, YIN L M, DIJKSTRA F A, et al. Linking plant traits to rhizosphere priming effects across six grassland species with and without nitrogen fertilization[J]. Soil Biology & Bio-chemistry, 2023, 185: 109144. DOI: 10.1016/j.soilbio.2023.109144
doi: 10.1016/j.soilbio.2023.109144
34 DE OLIVEIRA VARGAS T, CONCILIO A, WOYANN L G, et al. Rhizosphere priming effect on N mineralization in vegetable and grain crop systems[J]. Plant and Soil, 2020, 452: 281-293. DOI: 10.1007/s11104-020-04566-5
doi: 10.1007/s11104-020-04566-5
35 AI J J, BANFIELD C C, SHAO G D, et al. What controls the availability of organic and inorganic P sources in top- and subsoils? A 33P isotopic labeling study with root exudate addition[J]. Soil Biology & Biochemistry, 2023, 185: 109129. DOI: 10.1016/j.soilbio.2023.109129
doi: 10.1016/j.soilbio.2023.109129
36 VONG P C, DEDOURGE O, LASSERRE-JOULIN F, et al. Immobilized-S, microbial biomass-S and soil arylsulfatase activity in the rhizosphere soil of rape and barley as affected by labile substrate C and N additions[J]. Soil Biology & Bio-chemistry, 2003, 35(12): 1651-1661. DOI: 10.1016/j.soilbio.2003.08.012
doi: 10.1016/j.soilbio.2003.08.012
37 YIN L M, ZHANG T S, DIJKSTRA F A, et al. Priming effect varies with root order: a case of Cunninghamia lanceolata [J]. Soil Biology & Biochemistry, 2021, 160: 108354. DOI: 10.1016/j.soilbio.2021.108354
doi: 10.1016/j.soilbio.2021.108354
38 STREET L E, GARNETT M H, SUBKE J A, et al. Plant carbon allocation drives turnover of old soil organic matter in permafrost tundra soils[J]. Global Change Biology, 2020, 26(8): 4559-4571. DOI: 10.1111/gcb.15134
doi: 10.1111/gcb.15134
39 LU J Y, DIJKSTRA F A, WANG P, et al. Roots of non-woody perennials accelerated long-term soil organic matter decomposition through biological and physical mechanisms[J]. Soil Biology & Biochemistry, 2019, 134: 42-53. DOI: 10.1016/j.soilbio.2019.03.015
doi: 10.1016/j.soilbio.2019.03.015
40 SUN Z A, ZHU B, WANG F, et al. Rhizosphere effects of maize and wheat increase soil organic and inorganic carbon release in carbonate-rich soils: a three-source 13C partitioning study[J]. Frontiers in Environmental Science, 2021, 9: 654354. DOI: 10.3389/fenvs.2021.654354
doi: 10.3389/fenvs.2021.654354
41 YIN L M, CORNEO P E, RICHTER A, et al. Variation in rhizosphere priming and microbial growth and carbon use efficiency caused by wheat genotypes and temperatures[J]. Soil Biology & Biochemistry, 2019, 134: 54-61. DOI: 10.1016/j.soilbio.2019.03.019
doi: 10.1016/j.soilbio.2019.03.019
42 ZHU B, CHENG W X. Impacts of drying-wetting cycles on rhizosphere respiration and soil organic matter decomposition[J]. Soil Biology & Biochemistry, 2013, 63: 89-96. DOI: 10.1016/j.soilbio.2013.03.027
doi: 10.1016/j.soilbio.2013.03.027
43 MO C Y, JIANG Z H, CHEN P F, et al. Microbial metabolic efficiency functions as a mediator to regulate rhizosphere priming effects[J]. Science of the Total Environment, 2021, 759: 143488. DOI: 10.1016/j.scitotenv.2020.143488
doi: 10.1016/j.scitotenv.2020.143488
44 HE C, HARINDINTWALI J D, CUI H, et al. Deciphering the dual role of bacterial communities in stabilizing rhizosphere priming effect under intra-annual change of growing seasons[J]. Science of the Total Environment, 2023, 903: 166777. DOI: 10.1016/j.scitotenv.2023.166777
doi: 10.1016/j.scitotenv.2023.166777
45 PEI J M, DIJKSTRA F A, LI J Q, et al. Biochar-induced reductions in the rhizosphere priming effect are weaker under elevated CO2 [J]. Soil Biology & Biochemistry, 2020, 142: 107700. DOI: 10.1016/j.soilbio.2019.107700
doi: 10.1016/j.soilbio.2019.107700
46 SONG X J, LIU X T, LIANG G P, et al. Positive priming effect explained by microbial nitrogen mining and stoichio-metric decomposition at different stages[J]. Soil Biology & Biochemistry, 2022, 175: 108852. DOI: 10.1016/j.soilbio.2022.108852
doi: 10.1016/j.soilbio.2022.108852
47 WANG X H, LI S Y N, ZHU B, et al. Long-term nitrogen deposition inhibits soil priming effects by enhancing pho-sphorus limitation in a subtropical forest[J]. Global Change Biology, 2023, 29(14): 4081-4093. DOI: 10.1111/gcb.16718
doi: 10.1111/gcb.16718
48 SU T Q, DIJKSTRA F A, WANG P, et al. Rhizosphere priming effects of soybean and cottonwood: Do they vary with latitude?[J]. Plant and Soil, 2017, 420: 349-360. DOI: 10.1007/s11104-017-3396-5
doi: 10.1007/s11104-017-3396-5
49 DIJKSTRA F A, CHENG W X, JOHNSON D W. Plant biomass influences rhizosphere priming effects on soil organic matter decomposition in two differently managed soils[J]. Soil Biology & Biochemistry, 2006, 38(9): 2519-2526. DOI: 10.1016/j.soilbio.2006.02.020
doi: 10.1016/j.soilbio.2006.02.020
50 WANG X J, TANG C X, SEVERI J, et al. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation[J]. New Phytologist, 2016, 211(3): 864-873. DOI: 10.1111/nph.13966
doi: 10.1111/nph.13966
51 XU Q, WANG X J, TANG C X. Wheat and white lupin differ in rhizosphere priming of soil organic carbon under elevated CO2 [J]. Plant and Soil, 2017, 421: 43-55. DOI: 10.1007/s11104-017-3431-6
doi: 10.1007/s11104-017-3431-6
52 XU Q, WANG X J, TANG C X. The effects of elevated CO2 and nitrogen availability on rhizosphere priming of soil organic matter under wheat and white lupin[J]. Plant and Soil, 2018, 425: 375-387. DOI: 10.1007/s11104-018-3601-1
doi: 10.1007/s11104-018-3601-1
53 PAUSCH J, ZHU B, KUZYAKOV Y, et al. Plant inter-species effects on rhizosphere priming of soil organic matter decomposition[J]. Soil Biology & Biochemistry, 2013, 57: 91-99. DOI: 10.1016/j.soilbio.2012.08.029
doi: 10.1016/j.soilbio.2012.08.029
54 PAUSCH J, LOEPPMANN S, KÜHNEL A, et al. Rhizo-sphere priming of barley with and without root hairs[J]. Soil Biology & Biochemistry, 2016, 100: 74-82. DOI: 10.1016/j.soilbio.2016.05.009
doi: 10.1016/j.soilbio.2016.05.009
55 BOILARD G, BRADLEY R L, PATERSON E, et al. Inter-action between root hairs and soil phosphorus on rhizosphere priming of soil organic matter[J]. Soil Biology & Biochemistry, 2019, 135: 264-266. DOI: 10.1016/j.soilbio.2019.05.013
doi: 10.1016/j.soilbio.2019.05.013
56 ZHU B, CHENG W X. Nodulated soybean enhances rhizo-sphere priming effects on soil organic matter decomposition more than non-nodulated soybean[J]. Soil Biology & Bioche-mistry, 2012, 51: 56-65. DOI: 10.1016/j.soilbio.2012.04.016
doi: 10.1016/j.soilbio.2012.04.016
57 ZHU Z K, GE T D, LIU S L, et al. Rice rhizodeposits affect organic matter priming in paddy soil: the role of N fertilization and plant growth for enzyme activities, CO2 and CH4 emissions[J]. Soil Biology & Biochemistry, 2018, 116: 369-377. DOI: 10.1016/j.soilbio.2017.11.001
doi: 10.1016/j.soilbio.2017.11.001
58 ZANG H D, WANG J Y, KUZYAKOV Y. N fertilization decreases soil organic matter decomposition in the rhizosphere[J]. Applied Soil Ecology, 2016, 108: 47-53. DOI: 10.1016/j.apsoil.2016.07.021
doi: 10.1016/j.apsoil.2016.07.021
59 CHEN P F, MO C Y, HE C, et al. Shift of microbial turnover time and metabolic efficiency strongly regulates rhizosphere priming effect under nitrogen fertilization in paddy soil[J]. Science of the Total Environment, 2021, 800: 149590. DOI: 10.1016/j.scitotenv.2021.149590
doi: 10.1016/j.scitotenv.2021.149590
60 JIANG Z H, LIU Y Z, YANG J P, et al. Effects of nitrogen fertilization on the rhizosphere priming[J]. Plant and Soil, 2021, 462: 489-503. DOI: 10.1007/s11104-021-04872-6
doi: 10.1007/s11104-021-04872-6
61 LU J Y, YANG J F, KEITEL C, et al. Rhizosphere priming effects of Lolium perenne and Trifolium repens depend on phosphorus fertilization and biological nitrogen fixation[J]. Soil Biology & Biochemistry, 2020, 150: 108005. DOI: 10.1016/j.soilbio.2020.108005
doi: 10.1016/j.soilbio.2020.108005
62 DIJKSTRA F A, CHENG W X. Moisture modulates rhizo-sphere effects on C decomposition in two different soil types[J]. Soil Biology & Biochemistry, 2007, 39(9): 2264-2274. DOI: 10.1016/j.soilbio.2007.03.026
doi: 10.1016/j.soilbio.2007.03.026
63 MATOS C, TEIXEIRA R, SILVA I, et al. Crop-weed com-petition changes the decomposition of soil organic matter fractions in the rhizosphere[J]. Archives of Agronomy and Soil Science, 2019, 65(11): 1507-1520. DOI: 10.1080/03650340.2019.1566717
doi: 10.1080/03650340.2019.1566717
64 张常仁,杨雅丽,程全国,等.不同耕作模式对东北黑土微生物群落结构和酶活性的影响[J].土壤与作物,2020,9(4):335-347. DOI:10.11689/j.issn.2095-2961.2020.04.002
ZHANG C R, YANG Y L, CHENG Q G, et al. Effects of different tillages on soil microbial community structure and enzyme activity in Mollisols of China[J]. Soils and Crops, 2020, 9(4): 335-347. (in Chinese with English abstract)
doi: 10.11689/j.issn.2095-2961.2020.04.002
65 SAAR S, SEMCHENKO M, BAREL J M, et al. Legume presence reduces the decomposition rate of non-legume roots[J]. Soil Biology & Biochemistry, 2016, 94: 88-93. DOI: 10.1016/J.SOILBIO.2015.11.026
doi: 10.1016/J.SOILBIO.2015.11.026
66 ROSENZWEIG S T, SCHIPANSKI M E, KAYE J P. Rhizos-phere priming and plant-mediated cover crop decomposition[J]. Plant and Soil, 2017, 417: 127-139. DOI: 10.1007/s11104-017-3246-5
doi: 10.1007/s11104-017-3246-5
67 WANG L W, O’CONNOR D, RINKLEBE J, et al. Biochar aging: mechanisms, physicochemical changes, assessment, and implications for field applications[J]. Environmental Science & Technology, 2020, 54(23): 14797-14814. DOI: 10.1021/acs.est.0c04033
doi: 10.1021/acs.est.0c04033
68 WANG F, HARINDINTWALI J D, WEI K, et al. Climate change: strategies for mitigation and adaptation[J]. The Innovation Geoscience, 2023, 1(1): 100015. DOI: 10.59717/j.xinn-geo.2023.100015
doi: 10.59717/j.xinn-geo.2023.100015
69 XIA L L, CAO L, YANG Y, et al. Integrated biochar solutions can achieve carbon-neutral staple crop production[J]. Nature Food, 2023, 4(3): 236-246. DOI: 10.1038/s43016-023-00694-0
doi: 10.1038/s43016-023-00694-0
70 DING X Y, LI G T, ZHAO X R, et al. Biochar application significantly increases soil organic carbon under conservation tillage: an 11-year field experiment[J]. Biochar, 2023, 5(1): 28. DOI: 10.1007/s42773-023-00226-w
doi: 10.1007/s42773-023-00226-w
71 MANZONI S, PORPORATO A. Soil carbon and nitrogen mineralization: theory and models across scales[J]. Soil Biology & Biochemistry, 2009, 41(7): 1355-1379. DOI: 10.1016/j.soilbio.2009.02.031
doi: 10.1016/j.soilbio.2009.02.031
72 KEITH A, SINGH B, DIJKSTRA F A. Biochar reduces the rhizosphere priming effect on soil organic carbon[J]. Soil Biology & Biochemistry, 2015, 88: 372-379. DOI: 10.1016/j.soilbio.2015.06.007
doi: 10.1016/j.soilbio.2015.06.007
73 刘本娟,谢祖彬,刘琦,等.生物质炭引起的土壤碳激发效应与土壤理化特性的相关性[J].土壤,2021,53(2):343-353. DOI:10.13758/j.cnki.tr.2021.02.018
LIU B J, XIE Z B, LIU Q, et al. Correlation between biochar-induced carbon priming effect in soils and soil physioche-mical properties[J]. Soils, 2021, 53(2): 343-353. (in Chinese with English abstract)
doi: 10.13758/j.cnki.tr.2021.02.018
74 JOSEPH S, COWIE A L, VAN ZWIETEN L, et al. How biochar works, and when it doesn’t: a review of mechanisms controlling soil and plant responses to biochar[J]. GCB Bioenergy, 2021, 13(11): 1731-1764. DOI: 10.1111/gcbb.12885
doi: 10.1111/gcbb.12885
75 潘根兴,丁元君,陈硕桐,等.从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J].地球科学进展,2019,34(5):451-470. DOI:10.11867/j.issn.1001-8166.2019.05.0451
PAN G X, DING Y J, CHEN S T, et al. Exploring the nature of soil organic matter from humic substances isolation to SOMics of molecular assemblage[J]. Advances in Earth Science, 2019, 34(5): 451-470. (in Chinese with English abstract)
doi: 10.11867/j.issn.1001-8166.2019.05.0451
76 KUZYAKOV Y, FRIEDEL J K, STAHR K. Review of mechanisms and quantification of priming effects[J]. Soil Biology & Biochemistry, 2000, 32(11/12): 1485-1498. DOI: 10.1016/s0038-0717(00)00084-5
doi: 10.1016/s0038-0717(00)00084-5
77 JILLING A, KEILUWEIT M, GUTKNECHT J L M, et al. Priming mechanisms providing plants and microbes access to mineral-associated organic matter[J]. Soil Biology & Bio-chemistry, 2021, 158: 108265. DOI: 10.1016/j.soilbio.2021.108265
doi: 10.1016/j.soilbio.2021.108265
78 PAUSCH J, KUZYAKOV Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale[J]. Global Change Biology, 2018, 24(1): 1-12. DOI: 10.1111/gcb.13850
doi: 10.1111/gcb.13850
79 JIANG Z H, LIN J D, LIU Y Z, et al. Double paddy rice conversion to maize-paddy rice reduces carbon footprint and enhances net carbon sink[J]. Journal of Cleaner Production, 2020, 258: 120643. DOI: 10.1016/j.jclepro.2020.120643
doi: 10.1016/j.jclepro.2020.120643
80 HAO J Q, LIN Y, REN G X, et al. Comprehensive benefit evaluation of conservation tillage based on BP neural network in the Loess Plateau[J]. Soil and Tillage Research, 2021, 205: 104784. DOI: 10.1016/j.still.2020.104784
doi: 10.1016/j.still.2020.104784
81 MOONEY S J, SJOGERSTEN S. Greenhouse gas emissions rise due to tillage[J]. Nature Food, 2022, 3(4): 246. DOI: 10.1038/s43016-022-00491-1
doi: 10.1038/s43016-022-00491-1
82 KRAUSS M, WIESMEIER M, DON A, et al. Reduced tillage in organic farming affects soil organic carbon stocks in temperate Europe[J]. Soil and Tillage Research, 2022, 216: 105262. DOI: 10.1016/j.still.2021.105262
doi: 10.1016/j.still.2021.105262
85 XIE H L, LI B, WANG C S, et al. Agroecosystem health assessment in western China[J]. Acta Ecologica Sinica, 2005, 25(11): 3028-3036. (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-0933.2005.11.033
86 AHVO A, HEINO M, SANDSTRÖM V, et al. Agricultural input shocks affect crop yields more in the high-yielding areas of the world[J]. Nature Food, 2023, 4(12): 1037-1046. DOI: 10.1038/s43016-023-00873-z
doi: 10.1038/s43016-023-00873-z
87 徐东进,童孟军.不同栽培密度和施肥量对大豆农艺性状和产量的影响[J].山东农业大学学报(自然科学版),2023,54(4):517-522. DOI:10.3969/j.issn.1000-2324.2023.04.006
XU D J, TONG M J. Effects of different cultivation densities and fertilizing amount on agronomic traits and yield of soybean[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2023, 54(4): 517-522. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-2324.2023.04.006
88 JIANG Z H, ZHONG Y M, YANG J P, et al. Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production[J]. Science of the Total Environment, 2019, 670: 210-217. DOI: 10.1016/j.scitotenv.2019.03.188
doi: 10.1016/j.scitotenv.2019.03.188
89 CHEN P F, YANG J P, JIANG Z H, et al. Prediction of future carbon footprint and ecosystem service value of carbon sequestration response to nitrogen fertilizer rates in rice production[J]. Science of the Total Environment, 2020, 735: 139506. DOI: 10.1016/j.scitotenv.2020.139506
doi: 10.1016/j.scitotenv.2020.139506
[1] 牛芳鹏,李新国,麦麦提吐尔逊•艾则孜null,赵慧. 基于连续投影算法的博斯腾湖西岸湖滨绿洲土壤有机碳含量的高光谱估算[J]. 浙江大学学报(农业与生命科学版), 2021, 47(5): 673-682.
[2] 莫朝阳,张鑫林,杨京平. 根际激发效应对土壤有机碳累积及分解的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 527-533.
[3] 孟龙,黄涂海,陈謇,钟福林,施加春,徐建明. 镉污染农田土壤安全利用策略及其思考[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 263-271.
[4] 邓勋飞, 陈晓佳, 麻万诸, 王飞, 任周桥, 秦方锦, 吕晓男. 杭州湾南岸滨海围垦区耕层土壤有机碳的变异特征及影响因素分析[J]. 浙江大学学报(农业与生命科学版), 2015, 41(03): 349-357.
[5] 吴家森1,2, 张金池1*, 黄坚钦2, 童志鹏3, 叶晶2, 顾光同4. 浙江省临安市山核桃产区林地土壤有机碳分布特征[J]. 浙江大学学报(农业与生命科学版), 2013, 39(4): 413-420.
[6] 田玉强 欧阳华 宋明华 牛海山 胡启武 . 青藏高原样带高寒生态系统土壤有机碳分布及其影响因子 [J]. 浙江大学学报(农业与生命科学版), 2007, 33(4): 443-449.