Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (4): 527-533    DOI: 10.3785/j.issn.1008-9209.2020.10.162
资源利用与环境保护     
根际激发效应对土壤有机碳累积及分解的影响
莫朝阳(),张鑫林,杨京平()
浙江大学环境与资源学院,杭州 310058
Influence of rhizosphere priming effects on accumulation and decomposition of soil organic carbon
Chaoyang MO(),Xinlin ZHANG,Jingping YANG()
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1897 KB)   HTML
摘要:

借助13C自然丰度法,通过盆栽实验测试2种植物(玉米、高粱)、2种土壤(水稻土、土)在2个生育期中的根际激发效应以及土壤样品的轻组有机碳(ρ1<1.7 g/cm3)和重组有机碳(ρ2>1.7 g/cm3)含量。结果表明:种植作物显著增强了土壤有机质的分解;在水稻土中种植玉米的大喇叭口期,总二氧化碳(CO2)碳通量中来源于土壤的碳最多,达到18.49 mg/(kg?d)。在各个时期,玉米的根际激发效应比高粱的根际激发效应都要强,种植玉米将带来更多的CO2排放。轻组有机碳含量在根际激发效应发生过程中显著改变,而重组有机碳含量则维持稳定。因此,根际激发效应可能直接作用于轻组有机碳。本研究为合理控制根际激发效应强度和降低全球CO2排放量提供了理论基础。

关键词: 根际激发效应土壤有机碳轻组有机碳重组有机碳    
Abstract:

By using a 13C natural abundance method, this study investigated the rhizosphere priming effects (RPE) of sorghum and maize growing in two types of soil (paddy soil and lou soil) at two stages, and the contents of light fraction organic carbon (ρ1<1.7 g/cm3) and heavy fraction organic carbon (ρ2>1.7 g/cm3) of soil were also determined. The results showed that planting crops significantly enhanced the soil organic matter decomposition. And the maize induced the most CO2-C flux derived from soil organic carbon at the trumpet stage in paddy soil, which reaching 18.49 mg/(kg?d). The maize induced stronger RPE than sorghum across all growth stages, which indicated that planting maize would bring more CO2 emission. The content of light fraction organic carbon of soil changed significantly, while the content of heavy fraction organic carbon remained stable during RPE process. Hence, RPE may directly function on the light fraction organic carbon. This study provides the theoretical basis for controlling the RPE intensity reasonably and reducing global CO2 fluxes.

Key words: rhizosphere priming effect    soil organic carbon    light fraction organic carbon    heavy fraction organic carbon
收稿日期: 2020-10-16 出版日期: 2021-09-02
CLC:  S 154.4  
基金资助: 国家自然科学基金(31870419);国家重点研发计划(2016YFD0300203-4)
通讯作者: 杨京平     E-mail: 21814098@zju.edu.cn;jpyang@zju.edu.cn
作者简介: 莫朝阳(https://orcid.org/0000-0003-2506-2358),E-mail:21814098@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
莫朝阳
张鑫林
杨京平

引用本文:

莫朝阳,张鑫林,杨京平. 根际激发效应对土壤有机碳累积及分解的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 527-533.

Chaoyang MO,Xinlin ZHANG,Jingping YANG. Influence of rhizosphere priming effects on accumulation and decomposition of soil organic carbon. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 527-533.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.10.162        http://www.zjujournals.com/agr/CN/Y2021/V47/I4/527

参量

Parameter

水稻土

Paddy soil

小麦土

Lou soil

母质 Parent material新近浅海沉积物 Recent shadow sea sediments黄土 Loess
土壤组成 Soil texture粉砂黏壤土 Silty clay loam粉砂黏壤土 Silty clay loam
黏粒 Clay/%13.1738.90
粉粒 Silt/%49.4442.30
pH5.88.0
总碳 Total C/(g/kg)33.821.7
总氮 Total N/(g/kg)1.50.8
碳氮比 Ratio of C to N22.5327.13
13C丰度值 Abundance of 13C/‰-23.2-24.3
表1  供试土壤性质
图1  封闭循环的CO2吸收系统
图2  不同处理中来源于土壤有机质的CO2碳通量JS:拔节期;PS:水稻土;TS:大喇叭口期;LS:小麦土。短栅上的不同小写字母表示在相同时期内相同土壤上不同作物间在P<0.05水平差异有统计学意义。
图3  不同处理间根际激发效应强度JS:拔节期;PS:水稻土;TS:大喇叭口期;LS:小麦土。短栅上的不同小写字母表示在相同时期内相同土壤上不同作物间在P<0.05水平差异有统计学意义。
图4  不同处理中土壤轻组有机碳含量JS:拔节期;PS:水稻土;TS:大喇叭口期;LS:小麦土。短栅上的不同小写字母表示在相同时期内相同土壤上不同作物间在P<0.05水平差异有统计学意义。
图5  不同处理中土壤重组有机碳含量JS:拔节期;PS:水稻土;TS:大喇叭口期;LS:小麦土。短栅上的不同小写字母表示在相同时期内相同土壤上不同作物间在P<0.05水平差异有统计学意义。
1 ZHAO X X, LI Y L, XIE Z M, et al. Effects of nitrogen deposition and plant litter alteration on soil respiration in a semiarid grassland. Science of the Total Environment, 2020,740:139634. DOI:10.1016/j.scitotenv.2020.139634
doi: 10.1016/j.scitotenv.2020.139634
2 曲桂芳.植物光合产生的新碳对土壤自养、异养呼吸及根际激发效应的影响.北京:中国科学院大学,2016:14-16.
QU G F. Effects of new carbon produced by plant photosynthesis on soil autotrophic, heterotrophic respiration and rhizosphere stimulation. Beijing: University of Chinese Academy of Sciences, 2016:14-16. (in Chinese with English abstract)
3 REICHSTEIN M, BEER C. Soil respiration across scales: the importance of a model-data integration framework for data interpretation. Journal of Plant Nutrition and Soil Science, 2008,171:344-354. DOI:10.1002/jpln.200700075
doi: 10.1002/jpln.200700075
4 CHENG W X, PARTON W J, GONZALEZ-MELER M A, et al. Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 2014,201:31-44. DOI:10.111/nph.12440
doi: 10.111/nph.12440
5 HUANG Z Q, DAVIS M R, CONDRON L M, et al. Soil carbon pools, plant biomarkers and mean carbon residence time after afforestation of grassland with three tree species. Soil Biology and Biochemistry, 2011,43:1341-1349. DOI:10.1016/j.soilbio.2011.03.008
doi: 10
6 NEFF J C, TOWNSEND A R, GLEIXNER G, et al. Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature, 2002,419(6910):915-917. DOI:10.1038/nature01136
doi: 10.1038/nature01136
7 MCLAUCHLANA K K, HOBBIE S E. Comparison of labile soil organic matter fractionation techniques. Soil Science Society of America Journal, 2004,68(5):1616-1625. DOI:10.2136/sssaj2004.1616
doi: 10.2136/sssaj2004.1616
8 BREMER E, JANSEN H H, JOHNSTON A M. Sensitivity of total, light fraction and mineralisable organic matter to management practices in a lethbridge soil. Canadian Journal of Soil Science, 1994,74(2):131-138. DOI:10.4141/cjss94-020
doi: 10.4141/cjss94-020
9 KUZYAKOV Y. Priming effects: interactions between living and dead organic matter. Soil Biology and Biochemistry, 2010,42(9):1363-1371. DOI:10.1016/j.soilbio.2010.04.003
doi: 10.1016/j.soilbio.2010.04.003
10 FONTAINE S, BARDOUX G, BENEST D, et al. Mechanisms of the priming effect in a savannah soil amended with cellulose. Soil Science Society of American Journal, 2004,68(1):125-131. DOI:10.2136/sssaj2004.1250
doi: 10.2136/sssaj2004.1250
11 HAMER U, MARSCHNER B. Priming effects in soils after combined and repeated substrate additions. Geoderma, 2005,128(1):38-51. DOI:10.1016/j.geoderma.2004.12.014
doi: 10.1016/j.geoderma.2004.12.014
12 QIAO N, SCHAEFER D, BLAGODATSKAYA E, et al. Labile carbon retention compensates for CO2 released by priming in forest soils. Global Change Biology, 2014,20(6):1943-1954. DOI:10.1111/gcb.12458
doi: 10.1111/gcb.12458
13 CARTER M R, GREGORICH E G. Soil Sampling and Methods of Analysis. Boca Raton, Florida, U. S.: CRC Press, 2008.
14 张丽敏,徐明岗,娄翼来,等.土壤有机碳分组方法概述.中国土壤与肥料,2014(4):1-6. DOI:10.11838/sfsc.20140401
ZHANG L M, XU M G, LOU Y L, et al. Soil organic carbon fractionation methods. Soil and Fertilizer Sciences in China, 2014(4):1-6. (in Chinese with English abstract)
doi: 10.11838/sfsc.20140401
15 KUZYAKOV Y. Theoretical background for partitioning of root and rhizomicrobial respiration by δ13C of microbial biomass. European Journal of Soil Biology, 2005,41(1/2):1-9. DOI:10.1016/j.ejsobi.2005.07.002
doi: 10.1016/j.ejsobi.2005.07.002
16 宋文琛,同小娟,李俊,等.三源区分土壤呼吸组分研究.生态学报,2017,37(22):16-25. DOI:10.5846/stxb201609201887
SONG W C, TONG X J, LI J, et al. Studies on three-source partitioning of soil respiration. Acta Ecologica Sinica, 2017,37(22):16-25. (in Chinese with English abstract)
doi: 10.5846/stxb201609201887
17 孙悦,徐兴良,KUZYAKOV Y.根际激发效应的发生机制及其生态重要性.植物生态学报,2014,38(1): 62-75. DOI:10.3724/SP.J.1258.2014.00007
SUN Y, XU X L, KUZYAKOV Y. Mechanisms of rhizosphere priming effects and their ecological significance. Chinese Journal of Plant Ecology, 2014,38(1):62-75. (in Chinese with English abstract)
doi: 10.3724/SP.J.1258.2014.00007
[1] 邓勋飞, 陈晓佳, 麻万诸, 王飞, 任周桥, 秦方锦, 吕晓男. 杭州湾南岸滨海围垦区耕层土壤有机碳的变异特征及影响因素分析[J]. 浙江大学学报(农业与生命科学版), 2015, 41(03): 349-357.
[2] 吴家森1,2, 张金池1*, 黄坚钦2, 童志鹏3, 叶晶2, 顾光同4. 浙江省临安市山核桃产区林地土壤有机碳分布特征[J]. 浙江大学学报(农业与生命科学版), 2013, 39(4): 413-420.
[3] 田玉强 欧阳华 宋明华 牛海山 胡启武 . 青藏高原样带高寒生态系统土壤有机碳分布及其影响因子 [J]. 浙江大学学报(农业与生命科学版), 2007, 33(4): 443-449.