Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (4): 566-577    DOI: 10.3785/j.issn.1008-9209.2022.10.211
食品科学     
基于串联质谱标签的蛋白质组学技术分析海水流化冰辅助保鲜对大黄鱼肌肉蛋白质的影响
赵月涵1,2,3(),梅光明2,3(),张小军2,3,许丹2,3,郑斌1,邓尚贵1
1.浙江海洋大学食品与药学学院, 浙江 舟山 316022
2.浙江省海洋水产研究所, 浙江 舟山 316021
3.浙江省海水增养殖重点实验室, 浙江 舟山 316021
Tandem mass tag-based proteomics technology analyzing the effects of seawater slurry ice-assisted preservation on muscle proteins of Larimichthys crocea
Yuehan ZHAO1,2,3(),Guangming MEI2,3(),Xiaojun ZHANG2,3,Dan XU2,3,Bin ZHENG1,Shanggui DENG1
1.College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
2.Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, Zhejiang, China
3.Key Lab of Mariculture & Enhancement of Zhejiang Province, Zhoushan 316021, Zhejiang, China
 全文: PDF(1955 KB)   HTML
摘要:

为研究大黄鱼(Larimichthys crocea)蛋白质在海水流化冰辅助保鲜期内的变化,采用串联质谱标签(tandem mass tag, TMT)技术定量标记新鲜(贮藏0 d)大黄鱼及不同海水流化冰贮藏时间(7、23 d)下大黄鱼的肌肉蛋白质,筛选出不同贮藏时间下的差异表达蛋白,并对差异蛋白进行基因本体(gene ontology, GO)、直系同源簇/真核生物直系同源簇(clusters of orthologous groups/clusters of eukaryotic orthologous groups, COG/KOG)与京都基因和基因组数据库(Kyoto Encyclopedia of Genes and Genomes, KEGG)分析。结果显示,在3个比较组(7 d vs 0 d、23 d vs 7 d和23 d vs 0 d)中鉴定到的差异蛋白总数分别为215、133、269个,其中表达上调的差异蛋白数分别为117、37、113个,表达下调的差异蛋白数分别为98、96、156个。同时,3个比较组的共有差异蛋白为44个。GO分析表明,差异蛋白主要参与细胞过程、生物调节、细胞和细胞内组分、结合功能和催化活性等方面;COG/KOG分析表明,差异蛋白的功能活性主要集中在细胞骨架、碳水化合物转运和代谢、信号转导机制以及翻译后修饰、蛋白质周转和伴侣蛋白等方面;KEGG分析表明,差异蛋白共参与38条信号通路,且在贮藏后期(23 d),紧密连接和致病性大肠埃希菌感染2条信号通路中差异蛋白的参与数目最多,它们可能是造成大黄鱼新鲜度急剧下降的主要信号通路。44个共有差异蛋白与大黄鱼新鲜度指标进行的相关性分析表明,脆性X智力低下综合征相关蛋白2、肌醇-1-单磷酸酶、Rho GDP解离抑制剂1、锚蛋白-1和甲基四氢叶酸合酶结构域蛋白可以作为新鲜度指示蛋白。本研究为揭示大黄鱼在海水流化冰贮藏期内的品质变化机制、大黄鱼新鲜度评价和保鲜工艺改进提供了依据。

关键词: 流化冰大黄鱼串联质谱标签差异蛋白新鲜度指示蛋白    
Abstract:

In order to study the changes in muscle proteins of Larimichthys crocea during the seawater slurry ice-assisted preservation period, tandem mass tag (TMT)-based proteomics technology was used to quantitatively analyze the muscle proteins of fresh (stored for 0 d) L. crocea and the samples preserved by seawater slurry ice for different storage times (7 and 23 d). The differential proteins under different storage times were screened out, and they were analyzed by gene ontology (GO), clusters of orthologous groups/clusters of eukaryotic orthologous groups (COG/KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG). The results showed that the total number of differential proteins identified in the three comparison groups (7 d vs 0 d, 23 d vs 7 d, and 23 d vs 0 d) was 215, 133 and 269, respectively. The number of up-regulated differential proteins was 117, 37 and 113, respectively, and the number of down-regulated differential proteins was 98, 96 and 156, respectively. At the same time, a total of 44 common differential proteins were identified in the three comparison groups. GO analysis showed that the differential proteins were mainly involved in cellular process, biological regulation, cell and intracellular components, binding function, and catalytic activity. COG/KOG analysis showed that the functional activities of differential proteins were mainly concentrated in cytoskeleton, carbohydrate transport and metabolism, signal transduction mechanisms and posttranslational modification, protein turnover, and chaperones. KEGG analysis showed that 38 signaling pathways were involved and the number of differential proteins involved in the two signaling pathways of tight junction and pathogenic Escherichia coli infection was the highest at the late storage (23 d), which might be the main metabolic pathways causing the sharp decline in the freshness of L. crocea. The correlation analysis between 44 common differential proteins with the freshness indexes of L. crocea showed that five freshness indicator proteins were screened out, including fragile X mental retardation syndrome-related protein 2, inositol-1-monophosphatase, Rho GDP-dissociation inhibitor 1, ankyrin-1, and methyltetrahydrofolate synthase domain-containing protein. This study provides a basis for revealing the quality change mechanism, the freshness evaluation, and the preservation process improvement of L. crocea during the storage period with seawater slurry ice.

Key words: slurry ice    Larimichthys crocea    tandem mass tag    differential protein    freshness indicator protein
收稿日期: 2022-10-21 出版日期: 2023-08-29
CLC:  S984.1  
基金资助: 国家重点研发计划“蓝色粮仓科技创新”重点专项(2020YFD0900900)
通讯作者: 梅光明     E-mail: zhaoyh717@163.com;meigm123@163.com
作者简介: 赵月涵(https://orcid.org/0000-0002-1504-1070),E-mail:zhaoyh717@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵月涵
梅光明
张小军
许丹
郑斌
邓尚贵

引用本文:

赵月涵,梅光明,张小军,许丹,郑斌,邓尚贵. 基于串联质谱标签的蛋白质组学技术分析海水流化冰辅助保鲜对大黄鱼肌肉蛋白质的影响[J]. 浙江大学学报(农业与生命科学版), 2023, 49(4): 566-577.

Yuehan ZHAO,Guangming MEI,Xiaojun ZHANG,Dan XU,Bin ZHENG,Shanggui DENG. Tandem mass tag-based proteomics technology analyzing the effects of seawater slurry ice-assisted preservation on muscle proteins of Larimichthys crocea. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 566-577.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.10.211        https://www.zjujournals.com/agr/CN/Y2023/V49/I4/566

图1  不同贮藏时间下大黄鱼肌肉蛋白质的SDS-PAGE检测结果
图2  蛋白质序列覆盖度(A)和肽段数量分布(B)

比较组

Comparison group

差异蛋白总数

Total number of differential proteins

上调

Up-regulation

下调

Down-regulation

7 d vs 0 d21511798
23 d vs 0 d269113156
23 d vs 7 d1333796
表1  大黄鱼在海水流化冰不同贮藏时间下的蛋白表达差异

UniProt登录号

UniProt accession No.

蛋白质名称

Protein name

各比较组中差异蛋白的差异倍数

Fold change of differential protein in

each comparison group

7 d vs 0 d23 d vs 7 d23 d vs 0 d
A0A0H4LDX8Rab5A重组蛋白 Rab5A recombinant proteins1.4270.5200.742
A0A6G0HED4肌球蛋白重链 Myosin heavy chain0.7310.7420.543
A0A6G0HII2突触足蛋白2 Synaptopodin-20.3850.5690.219
A0A6G0HIR4

脆性X智力低下综合征相关蛋白2

Fragile X mental retardation syndrome-related protein 2

0.7150.7040.503
A0A6G0HKE8肌醇-1-单磷酸酶 Inositol-1-monophosphatase0.7130.7000.499
A0A6G0HLR4肌球蛋白6 Myosin-62.4740.6151.521
A0A6G0HMU0

真核翻译起始因子3亚基A

Eukaryotic translation initiation factor 3 subunit A

0.6510.6740.439
A0A6G0HNM9突触足蛋白2样蛋白 Synaptopodin 2-like protein0.5550.6050.336
A0A6G0HPX4蛋白质lin-7同源物 Protein lin-7 homolog1.6385.1558.444
表2  各比较组中的共有差异蛋白
A0A6G0HSL7半乳糖特异性凝集素nattectin Galactose-specific lectin nattectin0.1931.4060.271
A0A6G0HUF4肌球蛋白结合蛋白C Myosin-binding protein C0.3470.6980.242
A0A6G0HUI7角蛋白、Ⅰ型细胞骨架13 Keratin, type Ⅰ cytoskeletal 130.6930.7140.495
A0A6G0HUT9Rho GDP解离抑制剂1 Rho GDP-dissociation inhibitor 10.7460.6300.470
A0A6G0HWI1

真核翻译起始因子3亚基G

Eukaryotic translation initiation factor 3 subunit G

0.4940.3960.195
A0A6G0HYU6黑视蛋白A Melanopsin-A0.2610.7670.200
A0A6G0HZ37

鞭毛内转运蛋白140样蛋白

Intraflagellar transport protein 140-like protein

0.4150.4390.182
A0A6G0HZ55

V-maf肌腱膜纤维肉瘤癌基因样蛋白F

V-maf musculoaponeurotic fibrosarcoma oncogene-like protein F

1.8742.0043.755
A0A6G0I3I9肌增生素2 Myozenin-20.4880.5910.288
A0A6G0I445溶质载体家族25成员53 Solute carrier family 25 member 530.3880.4080.158
A0A6G0I6U9胶原蛋白α-1(X)链 Collagen alpha-1(X) chain3.0390.2420.735
A0A6G0I6X1HBS1样蛋白 HBS1-like protein0.4970.5320.264
A0A6G0IAT714-3-3蛋白ζ/δ 14-3-3 protein zeta/delta2.0580.6581.354
A0A6G0ICR0M蛋白 M-protein4.6050.5472.521
A0A6G0ID352,4-二烯酰辅酶A还原酶 2, 4-dienoyl-CoA reductase2.2020.6921.525
A0A6G0IDI0髓鞘相关糖蛋白1B236 Myelin-associated glycoprotein 1B2361.7851.5842.828
A0A6G0IFV4中性胆固醇酯水解酶1 Neutral cholesterol ester hydrolase 12.0830.7341.530
A0A6G0IG58GTP酶IMAP家族成员7 GTPase IMAP family member 70.3420.1420.048
A0A6G0IGE5La相关蛋白1B La-related protein 1B0.5150.5320.274
A0A6G0IHT3四三肽重复蛋白39C Tetratricopeptide repeat protein 39C1.5051.8812.830
A0A6G0IKL8谷胱甘肽转移酶 Glutathione transferase1.8420.7291.342
A0A6G0IKR9PDZ和LIM结构域蛋白5 PDZ and LIM domain protein 50.2680.4640.124
A0A6G0ILN6锚蛋白-1 Ankyrin-10.7400.7440.551
A0A6G0IM99蛋白酶体泛素受体ADRM1 Proteasomal ubiquitin receptor ADRM10.4510.2930.132
A0A6G0IQG7肌球蛋白结合蛋白H Myosin-binding protein H2.0850.6931.445
A0A6G0IQH0膜联蛋白 Annexin1.4311.4382.058
A0A6G0IQL8肌动蛋白解聚因子 Actin-depolymerizing factor0.5620.5260.296
A0A6G0J0G2

DNA结合蛋白RFX7调节因子

DNA-binding protein RFX7 regulatory factor

1.3170.4250.560
A0A6G0J0H5赖氨酸-转运RNA连接酶 Lysine-tRNA ligase0.7270.6840.497
A0A6G0J0J2α-蛋白激酶3 Alpha-protein kinase 30.6000.5950.357
A0A6G0J0U8

甲基四氢叶酸合酶结构域蛋白

Methyltetrahydrofolate synthase domain-containing protein

0.7680.6940.533
A0A6G0J239肌钙蛋白T Troponin T0.5710.7660.437
A0A6G0J3C040S核糖体蛋白S10 40S ribosomal protein S100.6650.7530.501
A0A6G0J3U5角蛋白、Ⅱ型细胞骨架8 Keratin, type Ⅱ cytoskeletal 80.3820.2570.098
A0A6G0JBI2角蛋白、Ⅰ型细胞骨架50 Keratin, type Ⅰ cytoskeletal 500.4130.2420.100
  
图3  各比较组中差异蛋白的GO功能注释1:细胞过程;2:生物调节;3:进化过程;4:多细胞有机体过程;5:代谢过程;6:应激反应;7:定位;8:信号传导;9:多生物过程;10:免疫系统过程;11:繁殖;12:移动;13:其他;14:细胞;15:细胞内;16:富含蛋白质复合物;17:结合;18:催化活性;19:结构分子活性;20:分子功能调节剂;21:转运蛋白活性;22:转录调节剂活性;23:其他;24:分子传感器活性。
图4  各比较组中差异蛋白的COG/KOG功能注释1:翻译、核糖体结构和生物合成;2:RNA加工和修饰;3:转录;4:复制、重组和修复;5:染色体结构和动力学;6:细胞周期控制、细胞分裂和染色体分区;7:核结构;8:抵御机制;9:信号转导机制;10:细胞壁/膜/被膜的生物合成;11:细胞骨架;12:细胞外结构;13:细胞内转运、分泌和小泡运输;14:翻译后修饰、蛋白质周转和伴侣蛋白;15:能量生成和转换;16:碳水化合物转运和代谢;17:氨基酸转运和代谢;18:核苷酸转运和代谢;19:辅酶转运和代谢;20:脂质转运和代谢;21:无机离子转运和代谢;22:次生代谢物的生物合成、转运和分解代谢;23:其他。

通路编号

Pathway No.

通路

Pathway

参与的差异蛋白数目

Number of differential proteins involved

7 d vs 0 d23 d vs 7 d23 d vs 0 d
map00010

糖酵解/糖异生

Glycolysis/gluconeogenesis

18018
map00030

磷酸戊糖通路

Pentose phosphate pathway

11010
map00051

果糖和甘露糖代谢

Fructose and mannose metabolism

606
map00500

淀粉和蔗糖代谢

Starch and sucrose metabolism

846
map01200

碳代谢

Carbon metabolism

18018
map01230

氨基酸的生物合成

Biosynthesis of amino acids

14015
map04530

紧密连接

Tight junction

0920
map04922

胰高血糖素信号通路

Glucagon signaling pathway

15013
map04931

胰岛素抗性

Insulin resistance

650
map05130

致病性大肠埃希菌感染

Pathogenic Escherichia coli infection

01020
map05230

癌症的中枢碳代谢

Central carbon metabolism in cancer

807
表3  各比较组中差异蛋白显著富集的KEGG通路

贮藏时间

Storage time/d

新鲜度指标 Freshness index
pH

TVB-N/

(mg/kg)

TBARS/

(mg/kg)

K

K value/%

Ca2+-ATP酶

Ca2+-ATPase/(μmol/(mg·h))

WHC/%
06.90±0.03b1.34±0.07c0.09±0.02c6.51±0.05c0.32±0.03a79.90±0.56a
76.81±0.05b1.84±0.06b0.23±0.03b12.49±0.04b0.20±0.01b69.57±0.21b
237.05±0.06a2.86±0.06a0.39±0.03a37.67±0.06a0.13±0.01c59.73±0.38c
表4  大黄鱼在海水流化冰不同贮藏时间下的新鲜度指标变化

新鲜度指标

Freshness index

pHTVB-NTBARS

K

K value

Ca2+-ATP酶

Ca2+-ATPase

WHC
pH1.000
TVB-N0.815**1.000
TBARS0.745**0.935**1.000

K

K value

-0.660**-0.801**0.900*1.000

Ca2+-ATP酶

Ca2+-ATPase

0.813**0.975**0.968**-0.889**1.000
WHC-0.713**-0.864**-0.942**0.973**-0.943**1.000
表5  新鲜度指标间的相关性分析
1 任中阳,崔雅清,陈玉峰,等.pH对大黄鱼肌原纤维蛋白结构性质及乳化性的影响[J].水产学报,2022.
REN Z Y, CUI Y Q, CHEN Y F, et al. Effect of pH on the structural properties and emulsification of myofibrillar proteins of large yellow croaker (Larimichthys crocea)[J]. Journal of Fisheries of China, 2022. (in Chinese with English abstract)
2 刘海燕,杨汝晴,陈玉磊,等.大黄鱼肌原纤维结合型丝氨酸蛋白酶的克隆、表达及性质[J].水产学报,2022,46(7):1154-1166. DOI:10.11964/jfc.20220313394
LIU H Y, YANG R Q, CHEN Y L, et al. Molecular cloning, expression and characterization of myofibril-bound serine proteinase from yellow croaker (Larimichthys crocea)[J]. Journal of Fisheries of China, 2022, 46(7): 1154-1166. (in Chinese with English abstract)
doi: 10.11964/jfc.20220313394
3 张建友,孙蕾,周广成,等.大黄鱼冷藏过程肌肉蛋白质生化特性与新鲜度的相关性[J].水产学报,2022,46(11):2196-2207. DOI:10.11964/jfc.20211013105
ZHANG J Y, SUN L, ZHOU G C, et al. Correlation between changes in freshness and biochemical characteristics of Larimichthys crocea muscle protein during cold storage[J]. Journal of Fisheries of China, 2022, 46(11): 2196-2207. (in Chinese with English abstract)
doi: 10.11964/jfc.20211013105
4 刘纪璇.冰鲜草鱼片结缔组织变化对鱼肉质构影响的研究[D].江苏,无锡:江南大学,2021.
LIU J X. The impact of change in intramuscular connective tissue on texture of ice-stored grass carp (Ctenopharyngodon idella) fillets[D]. Wuxi, Jiangsu: Jiangnan University, 2021. (in Chinese with English abstract)
5 彭玲,尤娟,熊光权,等.物流运输对鱼类肌肉品质影响研究进展[J].肉类研究,2021,35(12):54-63. DOI:10.7506/rlyj1001-8123-20210531-164
PENG L, YOU J, XIONG G Q, et al. Progress in research on the effects of logistics and transportation on the quality of fish muscle[J]. Meat Research, 2021, 35(12): 54-63. (in Chinesewith English abstract)
doi: 10.7506/rlyj1001-8123-20210531-164
6 赵月涵,杨盈悦,邓尚贵,等.冷杀菌技术在水产品保鲜中的应用研究进展[J].中国渔业质量与标准,2021,11(5):56-64. DOI:10.3969/j.issn.2095-1833.2021.05.009
ZHAO Y H, YANG Y Y, DENG S G, et al. Research progress on the applications of cold sterilization technology in the preservation of aquatic products[J]. China Fishery Quality and Standards, 2021, 11(5): 56-64. (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-1833.2021.05.009
7 ZHANG R J, CHENG Z M, DING F Y, et al. Improvements in chitosan-based slurry ice production and its application in precooling and storage of Pampus argenteus [J]. Food Chemistry, 2022, 393: 133266. DOI: 10.1016/j.foodchem.2022.133266
doi: 10.1016/j.foodchem.2022.133266
8 ANNAMALAI J, LAKSHMI N M, SIVAM V, et al. A comparative study on the quality changes of croaker (Johnius dussumieri) fish stored in slurry ice and flake ice[J]. Journal of Aquatic Food Product Technology, 2018, 27(4): 508-517. DOI: 10.1080/10498850.2018.1449152
doi: 10.1080/10498850.2018.1449152
9 GUAN F, CHEN Y R, ZHAO S M, et al. Effect of slurry ice during storage on myofibrillar protein of Pseudosciaena crocea [J]. Food Science & Nutrition, 2021, 9(7): 3806-3814. DOI: 10.1002/fsn3.2355
doi: 10.1002/fsn3.2355
10 蓝蔚青,孙雨晴,张楠楠,等.基于近红外光谱建立大黄鱼新鲜度预测模型[J].包装工程,2020,41(17):1-6. DOI:10.19554/j.cnki.1001-3563.2020.17.001
LAN W Q, SUN Y Q, ZHANG N N, et al. Prediction model for freshness of large yellow croaker based on near infrared[J]. Packaging Engineering, 2020, 41(17): 1-6. (in Chinese with English abstract)
doi: 10.19554/j.cnki.1001-3563.2020.17.001
11 刘源,陈伟华,侯巧娟,等.应用近红外光谱技术评价冰鲜大黄鱼新鲜度的研究[J].光谱学与光谱分析,2014,34(4):937-941. DOI:10.3964/j.issn.1000-0593(2014)04-0937-05
LIU Y, CHEN W H, HOU Q J, et al. Study on freshness evaluation of ice-stored large yellow croaker (Pseudosciaena crocea) using near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(4): 937-941. (in Chinese with English abstract)
doi: 10.3964/j.issn.1000-0593(2014)04-0937-05
12 周聃,冯俊丽,过雯婷,等.两种大洋性金枪鱼背部肌肉的差异蛋白组学分析[J].中国食品学报,2018,18(7):278-285. DOI:10.16429/j.1009-7848.2018.07.034
ZHOU D, FENG J L, GUO W T, et al. Analysis of differential proteome in back muscle of Thunnus alalunga and Thunnus albacores [J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(7): 278-285. (in Chinese with English abstract)
doi: 10.16429/j.1009-7848.2018.07.034
13 刘瑞,李睿智,王嵬,等.碱性蛋白酶降解鲢鱼肌原纤维蛋白的组学分析[J].中国食品学报,2021,21(3):43-52. DOI:10.16429/j.1009-7848.2021.03.005
LIU R, LI R Z, WANG W, et al. Proteomics analysis of myofibrillar proteins of silver carp in degraded by alcalase[J]. Journal of Chinese Institute of Food Science and Tech-nology, 2021, 21(3): 43-52. (in Chinese with English abstract)
doi: 10.16429/j.1009-7848.2021.03.005
14 CAO M J, CAO A L, LI Y C, et al. Effects of magnetic nanoparticles plus microwave on the thawing of largemouth bass (Micropterus salmoides) fillets based on iTRAQ quan-titative proteomics[J]. Food Chemistry, 2019, 286: 506-514. DOI: 10.1016/j.foodchem.2019.02.051
doi: 10.1016/j.foodchem.2019.02.051
15 石娟,李勇勇,周丽萍,等.基于iTRAQ技术研究冻藏条件对中华管鞭虾肌肉蛋白质的影响[J].中国食品学报,2021,21(11):120-132. DOI:10.16429/j.1009-7848.2021.11.015
SHI J, LI Y Y, ZHOU L P, et al. The effect of frozen storage conditions on muscular protein of Solenocera melantho based on iTRAQ technology[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(11): 120-132. (in Chinese with English abstract)
doi: 10.16429/j.1009-7848.2021.11.015
16 马聪聪.基于蛋白组学的三文鱼物种鉴别及新鲜度变化机理研究[D].河北,石家庄:河北科技大学,2020.
MA C C. Identification of salmon species and the mechanism of freshness change based on proteomics[D]. Shijiazhuang, Hebei: Hebei University of Science and Technology, 2020. (in Chinese with English abstract)
17 赵巧灵.金枪鱼在冷藏过程中鲜度变化及差异蛋白质组学研究[D].浙江,杭州:浙江工商大学,2015.
ZHAO Q L. Freshness variation and differential proteome analysis of tuna (Thunnus Obesus) during refrigerated storage[D]. Hangzhou, Zhejiang: Zhejiang Gongshang University, 2015. (in Chinese with English abstract)
18 张兰,姚一凡,覃安琪,等.基于TMT技术对低氧与常氧条件下牦牛PASMCs的蛋白组学分析[J].畜牧兽医学报,2022,53(7):2182-2193. DOI:10.11843/j.issn.0366-6964.2022.07.015
ZHANG L, YAO Y F, QIN A Q, et al. Proteomic analysis for yaks PASMCs under hypoxia and normoxia conditions based on TMT technique[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2182-2193. (in Chinese with English abstract)
doi: 10.11843/j.issn.0366-6964.2022.07.015
19 朱海滨,洪扬,王则金,等.真空包装结合食盐水处理对海鲈鱼冷藏保鲜品质的影响[J].渔业研究,2021,43(1):53-60. DOI:10.14012/j.cnki.fjsc.2021.01.006
ZHU H B, HONG Y, WANG Z J, et al. Effects of vacuum packaging combined with brine treatment on the fresh quality of Japanese sea bass (Lateolabrax japonicas)[J]. Journal of Fisheries Research, 2021, 43(1): 53-60. (in Chinese with English abstract)
doi: 10.14012/j.cnki.fjsc.2021.01.006
20 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中挥发性盐基氮的测定: [S].北京:中国标准出版社,2016.
National Health and Family Planning Commission of the People’s Republic of China. National Standards for Food Safety-Determination of Volatile Basic Nitrogen in Foods5009.228—2016:GB[S]. Beijing: Standards Press of China, 2016. (in Chinese)
21 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中丙二醛的测定: [S].北京:中国标准出版社,2016.
National Health and Family Planning Commission of the People’s Republic of China. National Standards for Food Safety-Determination of Malondialdehyde in Foods5009.181—2016:GB[S]. Beijing: Standards Press of China, 2016. (in Chinese)
22 全国水产标准化技术委员会水产品加工分技术委员会. 鱼类鲜度指标K值的测定 高效液相色谱法: [S].北京:中国标准出版社,2014. DOI:10.3724/sp.j.1123.2012.11011
Subcommittee 3 on Aquatic Product Processing of National Technical Committee 156 on Fish and Fishery Products of Standardization Administration of China.Determination of K Value as Fishery Freshness Index-High Performance Liquid Chromatography3048—2014:SC/T[S]. Beijing: Standards Press of China, 2014. (in Chinese)
doi: 10.3724/sp.j.1123.2012.11011
23 胡曼子,周雨琪,罗忆芝,等.巴河莲藕粉对白鲢鱼糜制品品质的影响[J].食品科技,2021,46(11):136-141. DOI:10.13684/j.cnki.spkj.2021.11.021
HU M Z, ZHOU Y Q, LUO Y Z, et al. Effect of Bahe lotus root powder on quality of surimi products[J]. Food Science and Technology, 2021, 46(11): 136-141. (in Chinese with English abstract)
doi: 10.13684/j.cnki.spkj.2021.11.021
24 WIŚNIEWSKI J R, ZOUGMAN A, NAGARAJ N, et al. Universal sample preparation method for proteome analysis[J]. Nature Methods, 2009, 6(5): 359-362. DOI: 10.1038/nmeth.1322
doi: 10.1038/nmeth.1322
25 石娟,李勇勇,周丽萍,等.非标记定量蛋白质组学分析冻结方式对中华管鞭虾肌肉差异蛋白质的影响[J].核农学报,2020,34(12):2681-2691. DOI:10.11869/j.issn.100-8551.2020.12.2681
SHI J, LI Y Y, ZHOU L P, et al. Effect of freezing methods on muscular differential protein of Solenocera melantho based on the analysis of label-free quantitative proteomics[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(12): 2681-2691. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2020.12.2681
26 BANERJEE A, IFRIM M F, VALDEZ A N, et al. Aberrant RNA translation in fragile X syndrome: from FMRP mechanisms to emerging therapeutic strategies[J]. Brain Research, 2018, 1693(Part A): 24-36. DOI: 10.1016/j.brainres.2018.04.008
doi: 10.1016/j.brainres.2018.04.008
27 CHATREE S, THONGMAEN N, TANTIVEJKUL K, et al. Role of inositols and inositol phosphates in energy metabolism[J]. Molecules, 2020, 25(21): 5079. DOI: 10.3390/molecules25215079
doi: 10.3390/molecules25215079
28 LÓPEZ-GAMBERO A J, SANJUAN C, SERRANO-CASTRO P J, et al. The biomedical uses of inositols: a nutraceutical approach to metabolic dysfunction in aging and neurode-generative diseases[J]. Biomedicines, 2020, 8(9): 295. DOI: 10.3390/biomedicines8090295
doi: 10.3390/biomedicines8090295
29 HALL A. Rho GTPases and the actin cytoskeleton[J]. Science, 1998, 279(5350): 509-514.
30 耿菲,陈莹莹,姚婧昕,等.TGF-β1诱导肌成纤维细胞转化相关调节蛋白的蛋白组学筛选与验证[J].环境与健康杂志,2020,37(8):697-702, 753. DOI:10.16241/j.cnki.1001-5914.2020.08.010
GENG F, CHEN Y Y, YAO J X, et al. Proteomics-based screening and identification of regulatory proteins of myofi-broblast transformation stimulated by TGF-β1[J]. Journal of Environment and Health, 2020, 37(8): 697-702, 753. (in Chinese with English abstract)
doi: 10.16241/j.cnki.1001-5914.2020.08.010
31 GALLAGHER P G, TSE W T, SCARPA A L, et al. Structure and organization of the human ankyrin-1 gene. Basis for complexity of pre-mRNA processing[J]. The Journal of Biological Chemistry, 1997, 272(31): 19220-19228.
32 MACNAIR L, XIAO S X, MILETIC D, et al. MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis[J]. Brain, 2016, 139(1): 86-100. DOI: 10.1093/brain/awv308
doi: 10.1093/brain/awv308
[1] 蒋慧琪,王晶,汪愈超,冯凤琴. 养殖大黄鱼肌肉品质评价及其营养调控的研究进展[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 275-283.
[2] 余心杰, 吴雄飞, 沈伟良. 基于计算机视觉的岱衢族大黄鱼选育群体外形特征模式识别方法[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 490-498.