Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (6): 721-730    DOI: 10.3785/j.issn.1008-9209.2022.07.012
综述     
稻瘟病菌致病机制及绿色防控新策略
卢宣君1(),苏珍珠1,刘小红1,林福呈1,2()
1.浙江大学农业与生物技术学院生物技术研究所, 农产品质量安全与危害因子风险防控国家重点实验室, 杭州 310058
2.浙江省农业科学院植物保护与微生物研究所, 农产品质量安全与危害因子风险防控国家重点实验室, 杭州 310021
Review on pathogenic mechanism of Magnaporthe oryzae and new green prevention and control strategy
Xuanjun LU1(),Zhenzhu SU1,Xiaohong LIU1,Fucheng LIN1,2()
1.State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
2.State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
 全文: PDF(2645 KB)   HTML
摘要:

由稻瘟病菌引起的稻瘟病是一种世界性病害,严重影响全球水稻生产。稻瘟病菌变异迅速,导致品种抗病和农药防治效果下降。因此,从分子层面揭示稻瘟病菌的致病机制,可以为水稻病害防治和新药开发提供靶位分子。利用野生稻内生真菌防治稻瘟病为水稻病害的绿色防控提供了新思路。探索野生稻内生真菌资源,挖掘具有促进生长、免疫诱抗和抗逆适应等功能的菌株,探明水稻与内生真菌的互作机制,为开发新型内生真菌生防制剂提供了基础理论。本综述重点总结了近年来稻瘟病菌致病机制新进展以及水稻内生真菌作用机制的最新研究成果,并对稻瘟病绿色防控新策略的未来发展方向进行了展望。

关键词: 稻瘟病菌致病机制内生真菌生物防控    
Abstract:

Rice blast caused by Magnaporthe oryzae is a worldwide disease, which seriously affects the global rice production. The rapid variation of M. oryzae resulted in a decline in resistant variety screening and pesticide control. Therefore, revealing the pathogenic mechanism of M. oryzae at the molecular level can provide target molecules for rice disease control and new fungicide development. The utilization of endophytic fungi from wild rice to control rice blast provides a new idea for green management. By excavating the resources of wild rice endophytic fungi, identifying functional strains with the activities of promoting growth, immune induction and resistance to adverse conditions, and exploring the interaction mechanism between rice and endophytic fungi, it provides a basic theory for the development of endophytic fungi as new biocontrol agents. This review mainly summarized the novel research results on the pathogenic mechanism of M. oryzae and the functional mechanism of endophytic fungi in rice in recent years, and look forward to the future development direction of a new green prevention and control strategy for M. oryzae.

Key words: Magnaporthe oryzae    pathogenic mechanism    endophytic fungi    biocontrol
收稿日期: 2022-07-01 出版日期: 2022-12-27
CLC:  S 435.111.1  
基金资助: 浙江省重点研发计划项目(2019C02010);浙江省“三农六方”科技协作计划项目(CTZB-F170623LWZ-SNY1-6)
通讯作者: 林福呈     E-mail: luxuanjun595@163.com;fuchenglin@zju.edu.cn
作者简介: 卢宣君(https://orcid.org/0000-0003-2784-6316),E-mail:luxuanjun595@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
卢宣君
苏珍珠
刘小红
林福呈

引用本文:

卢宣君,苏珍珠,刘小红,林福呈. 稻瘟病菌致病机制及绿色防控新策略[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 721-730.

Xuanjun LU,Zhenzhu SU,Xiaohong LIU,Fucheng LIN. Review on pathogenic mechanism of Magnaporthe oryzae and new green prevention and control strategy. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 721-730.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.07.012        https://www.zjujournals.com/agr/CN/Y2022/V48/I6/721

图1  稻瘟病菌细胞自噬模式图
图2  稻镰状瓶霉、稻瘟病菌与水稻的互作模型比较SSCRPs: Small secreted cysteine-rich proteins; CWDEs: Cell wall degrading enzymes; GPCRs: G-protein coupled receptors.
1 MARROQUIN-GUZMAN M, SUN G C, WILSON R A. Glucose-ABL1-TOR signaling modulates cell cycle tuning to control terminal appressorial cell differentiation[J]. PLoS Genetics, 2017, 13(1): e1006557. DOI:10.1371/journal.pgen.1006557
doi: 10.1371/journal.pgen.1006557
2 HOWARD R J, FERRARI M A, ROACH D H, et al. Penetration of hard substrates by a fungus employing enormous turgor pressures[J]. PNAS, 1991, 88(24): 11281-11284. DOI:10.1073/pnas.88.24.11281
doi: 10.1073/pnas.88.24.11281
3 VENEAULT-FOURREY C, BAROOAH M, EGAN M, et al. Autophagic fungal cell death is necessary for infection by the rice blast fungus[J]. Science, 2006, 312(5773): 580-583. DOI:10.1126/science.1124550
doi: 10.1126/science.1124550
4 ZHU S Y, YAN Y X, QU Y M, et al. Role refinement of melanin synthesis genes by gene knockout reveals their functional diversity in Pyricularia oryzae strains[J]. Micro-biological Research, 2021, 242: 126620. DOI:10.1016/j.micres.2020.126620
doi: 10.1016/j.micres.2020.126620
5 EBBOLE D J. Magnaporthe as a model for understanding host-pathogen interactions[J]. Annual Review of Phyto-pathology, 2007, 45(1): 437-456. DOI:10.1146/annurev.phyto.45.062806.094346
doi: 10.1146/annurev.phyto.45.062806.094346
6 LIU S H, DEAN R A. G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea [J]. Molecular Plant-Microbe Interactions, 1997, 10(9): 1075-1086. DOI:10.1094/MPMI.1997.10.9.1075
doi: 10.1094/MPMI.1997.10.9.1075
7 XU J R, HAMER J E. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea [J]. Genes & Development, 1996, 10(21): 2696-2706. DOI:10.1101/gad.10.21.2696
doi: 10.1101/gad.10.21.2696
8 XU J R, STAIGER C J, HAMER J E. Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses[J]. PNAS, 1998, 95(21): 12713-12718. DOI:10.1073/pnas.95.21.12713
doi: 10.1073/pnas.95.21.12713
9 LEE S C, LEE Y H. Calcium/calmodulin-dependent signaling for appressorium formation in the plant pathogenic fungus Magnaporthe grisea [J]. Molecules and Cells, 1998, 8(6): 698-704.
10 RHO H S, JEON J Y, LEE Y H. Phospholipase C-mediated calcium signalling is required for fungal development and pathogenicity in Magnaporthe oryzae [J]. Molecular Plant Pathology, 2009, 10(3): 337-346. DOI:10.1111/j.1364-3703.2009.00536.x
doi: 10.1111/j.1364-3703.2009.00536.x
11 HE C C, KLIONSKY D J. Regulation mechanisms and signaling pathways of autophagy[J]. Annual Review of Genetics, 2009, 43: 67-93. DOI:10.1146/annurev-genet-102808-114910
doi: 10.1146/annurev-genet-102808-114910
12 MARROQUIN-GUZMAN M, WILSON R A. GATA-dependent glutaminolysis drives appressorium formation in Magnaporthe oryzae by suppressing TOR inhibition of cAMP/PKA signaling[J]. PLoS Pathogens, 2015, 11(4): e1004851. DOI:10.1371/journal.ppat.1004851
doi: 10.1371/journal.ppat.1004851
13 KERSHAW M J, TALBOT N J. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease[J]. PNAS, 2009, 106(37): 15967-15972. DOI:10.1073/pnas.0901477106
doi: 10.1073/pnas.0901477106
14 HE M, XU Y P, CHEN J H, et al. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae [J]. Autophagy, 2018, 14(9): 1543-1561. DOI:10.1080/15548627.2018.1458171
doi: 10.1080/15548627.2018.1458171
15 QIAN B, LIU X Y, JIA J, et al. MoPpe1 partners with MoSap1 to mediate TOR and cell wall integrity signalling in growth and pathogenicity of the rice blast fungus Magna-porthe oryzae [J]. Environmental Microbiology, 2018, 20(11): 3964-3979. DOI:10.1111/1462-2920.14421
doi: 10.1111/1462-2920.14421
16 YIN Z Y, FENG W Z, CHEN C, et al. Shedding light on autophagy coordinating with cell wall integrity signaling to govern pathogenicity of Magnaporthe oryzae [J]. Autophagy, 2020, 16(5): 900-916. DOI:10.1080/15548627.2019.1644075
doi: 10.1080/15548627.2019.1644075
17 LEVINE B, KLIONSKY D J. Development by self-digestion: molecular mechanisms and biological functions of autophagy[J]. Developmental Cell, 2004, 6(4): 463-477. DOI:10.1016/s1534-5807(04)00099-1
doi: 10.1016/s1534-5807(04)00099-1
18 LU J P, LIU T B, LIN F C. Identification of mature appressorium-enriched transcripts in Magnaporthe grisea, the rice blast fungus, using suppression subtractive hybridiza-tion[J]. FEMS Microbiology Letters, 2005, 245(1): 131-137. DOI:10.1016/j.femsle.2005.02.032
doi: 10.1016/j.femsle.2005.02.032
19 LIU X H, GAO H M, XU F, et al. Autophagy vitalizes the pathogenicity of pathogenic fungi[J]. Autophagy, 2012, 8(10): 1415-1425. DOI:10.4161/auto.21274
doi: 10.4161/auto.21274
20 ZHU X M, LI L, WU M, et al. Current opinions on autophagy in pathogenicity of fungi[J]. Virulence, 2019, 10(1): 481-489. DOI:10.1080/21505594.2018.1551011
doi: 10.1080/21505594.2018.1551011
21 ZHU X M, LI L, CAI Y Y, et al. A VASt-domain protein regulates autophagy, membrane tension, and sterol homeostasis in rice blast fungus[J]. Autophagy, 2021, 17(10): 2939-2961. DOI:10.1080/15548627.2020.1848129
doi: 10.1080/15548627.2020.1848129
22 ZHANG S L, LIANG M L, NAQVI N, et al. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae [J]. Autophagy, 2017, 13(8): 1318-1330. DOI:10.1080/15548627.2017.1327103
doi: 10.1080/15548627.2017.1327103
23 CAI Y Y, WANG J Y, WU X Y, et al. MoOpy2 is essential for fungal development, pathogenicity, and autophagy in Magnaporthe oryzae [J]. Environmental Microbiology, 2022, 24(3): 1653-1671. DOI:10.1111/1462-2920.15949
doi: 10.1111/1462-2920.15949
24 ZHENG W H, ZHOU J, HE Y L, et al. Retromer is essential for autophagy-dependent plant infection by the rice blast fungus[J]. PLoS Genetics, 2015, 11(12): e1005704. DOI:10.1371/journal.pgen.1005704
doi: 10.1371/journal.pgen.1005704
25 ZHENG H W, GUO Z K, XI Y, et al. Sorting nexin (MoVps17) is required for fungal development and plant infection by regulating endosome dynamics in the rice blast fungus[J]. Environmental Microbiology, 2017, 19(10): 4301-4317. DOI:10.1111/1462-2920.13896
doi: 10.1111/1462-2920.13896
26 ZHANG X J, WANG G H, YANG C D, et al. A HOPS protein, MoVps41, is crucially important for vacuolar morpho-genesis, vegetative growth, reproduction and virulence in Magnaporthe oryzae [J]. Frontiers in Plant Science, 2017, 8: 1091. DOI:10.3389/fpls.2017.01091
doi: 10.3389/fpls.2017.01091
27 ZHU X M, LI L, WANG J Y, et al. Vacuolar protein-sorting receptor MoVps13 regulates conidiation and pathogenicity in rice blast fungus Magnaporthe oryzae [J]. Journal of Fungi, 2021, 7(12): 1084. DOI:10.3390/jof7121084
doi: 10.3390/jof7121084
28 LIU X H, CHEN S M, GAO H M, et al. The small GTPase MoYpt7 is required for membrane fusion in autophagy and pathogenicity of Magnaporthe oryzae [J]. Environmental Microbiology, 2015, 17(11): 4495-4510. DOI:10.1111/1462-2920.12903
doi: 10.1111/1462-2920.12903
29 LI X, GAO C Y, LI L W, et al. MoEnd3 regulates appressorium formation and virulence through mediating endocytosis in rice blast fungus Magnaporthe oryzae [J]. PLoS Pathogens, 2017, 13(6): e1006449. DOI:10.1371/journal.ppat.1006449
doi: 10.1371/journal.ppat.1006449
30 YANG C D, DANG X, ZHENG H W, et al. Two Rab5 homologs are essential for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae [J]. Frontiers in Plant Science, 2017, 8: 620. DOI:10.3389/fpls.2017.00620
doi: 10.3389/fpls.2017.00620
31 ZHU X M, LIANG S, SHI H B, et al. VPS9 domain-containing proteins are essential for autophagy and endocytosis in Pyricularia oryzae [J]. Environmental Microbiology, 2018, 20(4): 1516-1530. DOI:10.1111/1462-2920.14076
doi: 10.1111/1462-2920.14076
32 BACON C W, WHITE J F, Jr. Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants[J]. Symbiosis, 2016, 68: 87-98. DOI:10.1007/s13199-015-0315-2
doi: 10.1007/s13199-015-0315-2
33 PETRINI O. Taxonomy of endophytic fungi of aerial plant tissues[M]//FOKKEMA N J, VAN DEN HEUVEL. Micro-biology of the Phylosphere. Cambridge, UK: Cambridge University Press, 1986: 175-187.
34 BRUNDRETT M C. Understanding the roles of multi-functional mycorrhizal and endophytic fungi[M]//SCHULZ B J, BOYLE C J, SIEBER T N. Microbial Root Endophytes. Berlin, Heidelberg, Germany: Springer-Verlag Berlin Heidel-berg, 2006: 281-298.
35 KRINGS M, TAYLOR T N, HASS H, et al. Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses[J]. New Phytologist, 2007, 174(3): 648-657. DOI:10.1111/j.1469-8137.2007.02008.x
doi: 10.1111/j.1469-8137.2007.02008.x
36 CARROLL G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont[J]. Ecology, 1988, 69(1): 2-9. DOI:10.2307/1943154
doi: 10.2307/1943154
37 SAIKKONEN K, ION D, GYLLENBERG M. The persistence of vertically transmitted fungi in grass metapopu-lations[J]. Proceedings of the Royal Society B: Biological Sciences, 2002, 269(1498): 1397-1403. DOI:10.1098/rspb.2002.2006
doi: 10.1098/rspb.2002.2006
38 CLAY K. Fungal endophytes of grasses: a defensive mutualism between plants and fungi[J]. Ecology, 1988, 69(1): 10-16. DOI:10.2307/1943155
doi: 10.2307/1943155
39 PHILIPPE G. Lolitrem B and indole diterpene alkaloids produced by endophytic fungi of the genus Epichloë and their toxic effects in livestock[J]. Toxins, 2016, 8(2): 47. DOI:10.3390/toxins8020047
doi: 10.3390/toxins8020047
40 ARNOLD A E, LUTZONI F. Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots?[J]. Ecology, 2007, 88(3): 541-549. DOI:10.1890/05-1459
doi: 10.1890/05-1459
41 ERNST M, MENDGEN K W, WIRSEL S G R. Endophytic fungal mutualists: seed-borne Stagonospora spp. enhance reed biomass production in axenic microcosms[J]. Molecular Plant-Microbe Interactions, 2003, 16(7): 580-587. DOI:10.1094/MPMI.2003.16.7.580
doi: 10.1094/MPMI.2003.16.7.580
42 REDMAN R S, SHEEHAN K B, STOUT R G, et al. Thermotolerance generated by plant/fungal symbiosis[J]. Science, 2002, 298(5598): 1581. DOI:10.1126/science.1072191
doi: 10.1126/science.1072191
43 ARNOLD A E, MEJÍA L C, KYLLO D, et al. Fungal endophytes limit pathogen damage in a tropical tree[J]. PNAS, 2003, 100(26): 15649-15654. DOI:10.1073/pnas.2533483100
doi: 10.1073/pnas.2533483100
44 MUCCIARELLI M, SCANNERINI S, BERTEA C, et al. In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization[J]. New Phytologist, 2003, 158(3): 579-591. DOI:10.1046/j.1469-8137.2003.00762.x
doi: 10.1046/j.1469-8137.2003.00762.x
45 SCHULZ B. Mutualistic interactions with fungal root endophytes[M]//SCHULZ B J E, BOYLE C J C, SIEBER T N. Microbial Root Endophytes. Berlin, Heidelberg, Germany: Springer-Verlag Berlin Heidelberg, 2006: 261-279.
46 BERTOLAZI A A, DE SOUZA S B, RUAS K F, et al. Inoculation with Piriformospora indica is more efficient in wild-type rice than in transgenic rice over-expressing the vacuolar H+-PPase[J]. Frontier in Microbiology, 2019, 10: 1087. DOI:10.3389/fmicb.2019.01087
doi: 10.3389/fmicb.2019.01087
47 VERGARA C, ARAUJO K E C, SPERANDIO M V L, et al. Dark septate endophytic fungi increase the activity of proton pumps, efficiency of 15N recovery from ammonium sulphate, N content, and micronutrient levels in rice plants[J]. Brazilian Journal of Microbiology, 2019, 50(3): 825-838. DOI:10.1007/s42770-019-00092-4
doi: 10.1007/s42770-019-00092-4
48 KHAN S A, HAMAYUN M, KHAN A L, et al. Isolation of plant growth promoting endophytic fungi from dicots inhabiting coastal sand dunes of Korea[J]. Pakistan Journal of Botany, 2012, 44(4): 1453-1460.
49 SIRRENBERG A, GÖBEL C, GROND S, et al. Pirifor-mospora indica affects plant growth by auxin production[J]. Physiologia Plantarum, 2007, 131(4): 581-589. DOI:10.1111/j.1399-3054.2007.00983.x
doi: 10.1111/j.1399-3054.2007.00983.x
50 BARAZANI O, VON DAHL C C, BALDWIN I T. Sebacina vermifera promotes the growth and fitness of Nicotiana attenuata by inhibiting ethylene signaling[J]. Plant Physiology, 2007, 144(2): 1223-1232. DOI:10.1104/pp.107.097543
doi: 10.1104/pp.107.097543
51 SHERAMETI I, SHAHOLLARI B, VENUS Y, et al. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters[J]. Journal of Biological Chemistry, 2005, 280(28): 26241-26247. DOI:10.1074/jbc.M500447200
doi: 10.1074/jbc.M500447200
52 GASONI L, DE GURFINKEL B S. The endophyte Cladorrhinum foecundissimum in cotton roots: phosphorus uptake and host growth[J]. Mycological Research, 1997, 101(7): 867-870. DOI:10.1017/S0953756296003462
doi: 10.1017/S0953756296003462
53 BARTHOLDY B A, BERRECK M, HASELWANDTER K. Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte[J]. BioMetals, 2001, 14(1): 33-42. DOI:10.1023/a:1016687021803
doi: 10.1023/a:1016687021803
54 MALLA R, PRASAD R, KUMAR R, et al. Phosphorus solubilizing symbiotic fungus: Piriformospra indica [J]. Endocytobiosis and Cell Research, 2004, 15(2): 579-600.
55 MACCHERONI W, Jr, AZEVEDO J L. Synthesis and secretion of phosphatases by endophytic isolates of Colleto-trichum musae grown under conditions of nutritional starvation[J]. The Journal of General and Applied Microbiology, 1998, 44(6): 381-387. DOI:10.2323/jgam.44.381
doi: 10.2323/jgam.44.381
56 BARROW J R, OSUNA-AVILA P, REYES-VERA I, et al. Fungal genomes that influence basic physiological processes of black grama and fourwing saltbush in arid southwestern rangelands: Proceedings of Shrubland dynamics—Fire and Water, August 10-12, 2004[C]. Fort Collins, CO, USA: United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2007.
57 USUKI F, NARISAWA K. A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage[J]. Mycologia, 2007, 99(2): 175-184. DOI:10.3852/mycologia.99.2.175
doi: 10.3852/mycologia.99.2.175
58 FONTANA D C, DE PAULA S, TORRES A G, et al. Endophytic fungi: biological control and induced resistance to phytopathogens and abiotic stresses[J]. Pathogens, 2021, 10(5): 570. DOI:10.3390/pathogens10050570
doi: 10.3390/pathogens10050570
59 SANTOS M, CESANELLI I, DIÁNEZ F, et al. Advances in the role of dark septate endophytes in the plant resistance to abiotic and biotic stresses[J]. Journal of Fungi, 2021, 7(11): 939. DOI:10.3390/jof7110939
doi: 10.3390/jof7110939
60 周莹,吴令上,陈秋燕,等.抗宿主白绢病的铁皮石斛内生真菌的筛选[J].中国中药杂志,2020,45(22):5459-5464. DOI:10.19540/j.cnki.cjcmm.20200816.102
ZHOU Y, WU L S, CHEN Q Y, et al. Screening of endophytic fungi against southern blight disease pathogen—Sclerotium delphinii in Dendrobium catenatum [J]. China Journal of Chinese Materia Medica, 2020, 45(22): 5459-5464. (in Chinese with English abstract)
doi: 10.19540/j.cnki.cjcmm.20200816.102
61 UROOJ F, FARHAT H, TARIQ A, et al. Role of endophytic Penicillium species and Pseudomonas monteilii in inducing the systemic resistance in okra against root rotting fungi and their effect on some physiochemical properties of okra fruit[J]. Journal of Applied Microbiology, 2021, 130(2): 604-616. DOI:10.1111/jam.14894
doi: 10.1111/jam.14894
62 ZHANG Y, SHI J L, GAO Z H, et al. Production of pinoresinol diglucoside, pinoresinol monoglucoside, and pinoresinol by Phomopsis sp. XP-8 using mung bean and its major components[J]. Applied Microbiology and Biotechnology, 2015, 99(11): 4629-4643. DOI:10.1007/s00253-015-6491-7
doi: 10.1007/s00253-015-6491-7
63 RODRIGO S, SANTAMARIA O, HALECKER S, et al. Antagonism between Byssochlamys spectabilis (anamorph Paecilomyces variotii) and plant pathogens: involvement of the bioactive compounds produced by the endophyte[J]. Annals of Applied Biology, 2017, 171(3): 464-476. DOI:10.1111/aab.12388
doi: 10.1111/aab.12388
64 MENDOZA-MENDOZA A, ZAID R, LAWRY R, et al. Molecular dialogues between Trichoderma and roots: role of the fungal secretome[J]. Fungal Biology Reviews, 2018, 32(2): 62-85. DOI:10.1016/j.fbr.2017.12.001
doi: 10.1016/j.fbr.2017.12.001
65 XU L L, HAN T, WU J Z, et al. Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus[J]. Phytomedicine, 2009, 16(6/7): 609-616. DOI:10.1016/j.phymed.2009.03.014
doi: 10.1016/j.phymed.2009.03.014
66 TERHONEN E, SIPARI N, ASIEGBU F O. Inhibition of phytopathogens by fungal root endophytes of Norway spruce[J]. Biological Control, 2016, 99: 53-63. DOI:10.1016/j.biocontrol.2016.04.006
doi: 10.1016/j.biocontrol.2016.04.006
67 WALLER F, ACHATZ B, BALTRUSCHAT H, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield[J]. PNAS, 2005, 102(38): 13386-13391. DOI:10.1073/pnas.0504423102
doi: 10.1073/pnas.0504423102
68 RIPA F A, CAO W D, TONG S, et al. Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi[J]. BioMed Research International, 2019, 2019: 6105865. DOI:10.1155/2019/6105865
doi: 10.1155/2019/6105865
69 ZAHOOR M, IRSHAD M, RAHMAN H, et al. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7[J]. Ecotoxi-cology and Environmental Safety, 2017, 142: 139-149. DOI:10.1016/j.ecoenv.2017.04.005
doi: 10.1016/j.ecoenv.2017.04.005
70 YUAN Z L, LIN F C, ZHANG C L, et al. A new species of Harpophora (Magnaporthaceae) recovered from healthy wild rice (Oryza granulata) roots, representing a novel member of a beneficial dark septate endophyte[J]. FEMS Microbiology Letters, 2010, 307(1): 94-101. DOI:10.1111/j.1574-6968.2010.01963.x
doi: 10.1111/j.1574-6968.2010.01963.x
71 SU Z Z, MAO L J, LI N, et al. Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease[J]. PLoS ONE, 2013, 8(4): e61332. DOI:10.1371/journal.pone.0061332
doi: 10.1371/journal.pone.0061332
72 XU X H, SU Z Z, WANG C, et al. The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte[J]. Scientific Reports, 2014, 4: 5783. DOI:10.1038/srep05783
doi: 10.1038/srep05783
73 XU X H, WANG C, LI S X, et al. Friend or foe: differential responses of rice to invasion by mutualistic or pathogenic fungi revealed by RNAseq and metabolite profiling[J]. Scientific Reports, 2015, 5: 13624. DOI: 10.1038/srep13624
doi: 10.1038/srep13624
[1] 汤帅,徐喆,吕务云,童琪,肖宇,王政逸. 稻瘟病菌假定核糖体生成因子MoRei1功能研究[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 443-452.
[2] 何亚涛,高丹丹,甘森宁,孙婷,蔡葵蒸,刘俊林. 怀地黄内生产红色素真菌血红红曲霉(Monascus sanguineus)的分离与鉴定[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 1-7.
[3] 易晓华,冯俊涛,方香玲,李玉平,张 兴. 除虫菊内生拟盘多毛孢Y1菌株的生物学特性及其对植物病原菌的抑制作用[J]. 浙江大学学报(农业与生命科学版), 2008, 34(5): 516-524.
[4] 李德葆  金庆超  董海涛 . 稻瘟病菌附着胞发育相关信号传递研究进展[J]. 浙江大学学报(农业与生命科学版), 2006, 32(3): 257-264.
[5] 邹凤莲  汪志平  卢钢. 番红花链格孢菌的分离及其生物学特性研究[J]. 浙江大学学报(农业与生命科学版), 2006, 32(2): 162-167.
[6] 李南羿  柴荣耀  Fulai Ran  郭泽建. OsiWRKY基因的水稻转化和转基因水稻抗病性分析[J]. 浙江大学学报(农业与生命科学版), 2005, 31(6): 697-700.
[7] Ngueko R B  沈瑛  王洪凯  林福呈  徐同. 湖南省部分病圃稻瘟菌的遗传多样性的RAPD分析[J]. 浙江大学学报(农业与生命科学版), 2004, 30(4): 355-362.