Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (4): 443-452    DOI: 10.3785/j.issn.1008-9209.2021.06.153
植物保护     
稻瘟病菌假定核糖体生成因子MoRei1功能研究
汤帅(),徐喆,吕务云,童琪,肖宇,王政逸()
浙江大学生物技术研究所,水稻生物学国家重点实验室,杭州 310058
Functional analysis of the putative ribosome biogenesis factor MoRei1in Magnaporthe oryzae
Shuai TANG(),Zhe XU,Wuyun Lü,Qi TONG,Yu XIAO,Zhengyi WANG()
State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
 全文: PDF(4219 KB)   HTML
摘要:

为深入探究稻瘟病菌假定核糖体生成因子MoRei1的生物学功能,通过敲除MoREI1基因、分析ΔMorei1突变体表型、鉴定基因互补及其互作蛋白功能等对其进行了研究。结果表明:敲除MoREI1基因后,稻瘟病菌ΔMorei1突变体的有性生殖能力丧失,附着胞形成率显著下降,致病力减弱;ΔMorei1突变体对细胞壁和氧化胁迫因子的敏感性增强,附着胞发育过程中糖原的移动和降解速率下降。稻瘟病菌MoREI1基因可恢复酿酒酵母REI1基因缺失突变体的部分表型,说明MoRei1与酵母核糖体生成因子Rei1在功能上具有同源性,并可能在核糖体生成过程中起类似的作用。稻瘟病菌MoRei1蛋白与预测的核输出因子MoAlb1间存在物理互作,且MoREI1基因缺失可影响稻瘟病菌MoAlb1蛋白的亚细胞定位。上述研究结果对阐明MoRei1在稻瘟病菌形态分化和致病性中的作用及其机制有重要意义。

关键词: 稻瘟病菌核糖体生成因子MoRei1功能分析MoAlb1蛋白    
Abstract:

To further explore the biological roles of MoRei1in the rice blast fungus Magnaporthe oryzae, we carried out MoREI1 gene deletion, phenotypic analysis of ΔMorei1 mutants, gene complementation and identification of its interaction proteins. The results showed that the ΔMorei1 mutants were defective in sexual reproduction, appressorium formation and pathogenicity. Deletion of MoREI1 led to significant increase of sensitivity to cell wall damaging and oxidative stress agents, and delay of glycogen mobilization and degradation during appressorium development. Moreover, the MoREI1 gene could partially complement the defects of Saccharomyces cerevisiae Δrei1 mutants, indicating that MoRei1 is a functional homolog of yeast Rei1, and may share a similar role in ribosome biogenesis. MoRei1 physically interacts with MoAlb1, a predicted nuclear export factor. Interestingly, deletion of MoREI1 resulted in the impairment of nuclear localization of MoAlb1. These results lay a foundation to clarify the roles of MoRei1 in fungal morphogenesis and pathogenicity in M. oryzae.

Key words: Magnaporthe oryzae    ribosome biogenesis factor MoRei1    functional analysis    MoAlb1 protein
收稿日期: 2021-06-15 出版日期: 2022-09-03
CLC:  S 432.1  
基金资助: 国家自然科学基金项目(31770153)
通讯作者: 王政逸     E-mail: 21816071@zju.edu.cn;zhywang@zju.edu.cn
作者简介: 汤帅(https://orcid.org/0000-0001-6724-8850),E-mail:21816071@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
汤帅
徐喆
吕务云
童琪
肖宇
王政逸

引用本文:

汤帅,徐喆,吕务云,童琪,肖宇,王政逸. 稻瘟病菌假定核糖体生成因子MoRei1功能研究[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 443-452.

Shuai TANG,Zhe XU,Wuyun Lü,Qi TONG,Yu XIAO,Zhengyi WANG. Functional analysis of the putative ribosome biogenesis factor MoRei1in Magnaporthe oryzae. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 443-452.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.06.153        https://www.zjujournals.com/agr/CN/Y2022/V48/I4/443

引物名称

Primer name

引物序列(5' →3'

Primer sequence (5' →3')

扩增产物

Amplification product

MoREI-F1GGGAATATTAAGCTTGGTACATGGCGACGATAGCAGCCGCTC

MoREI1开放阅读框

Open reading frame

(ORF) of MoREI1

MoREI-R1TAGTGGATCCGAGCTCGTCAGCCACCAAGCTTCGAGTAA
MoREI1-F2CATATGGCCATGGAGGCCGAATTCATGGCGACGATAGCAGCCGC

MoREI1开放阅读框

ORF of MoREI1

MoREI1-R2TCGACGGATCGCCGGGAATTCTCAGCCACCAAGCTTCGAGTAA
MoALB1-F1ATGGAGGCCAGTGAATTCATGCCATCCAGGGCCAGC

MoALB1开放阅读框

ORF of MoALB1

MoALB1-R1TCGATGCCCACCCGGGTGGAATTCTCAAGCAAGCCACTCAGGCAA
表 1  本研究所用引物
图1  不同真菌Rei1同源蛋白质的系统进化分析
图2  酵母野生型BY4741、突变体Δrei1 及回补菌株Δreil/MoREI1在不同温度下的生长情况阴性对照:在酿酒酵母突变体菌株YBR267W中导入空载质粒pYES2。
图3  稻瘟病菌野生型Guy11与ΔMorei1-22 突变体的有性生殖测定
图4  MoREI1 基因缺失对稻瘟病菌致病性、附着胞形成及侵染过程的影响A. 水稻叶片喷雾分生孢子5 d后病斑形成情况;B. 附着胞形态(24 h);C. 附着胞形成率统计(24 h);D. 侵入菌丝类型(AP:附着胞;IH:侵入菌丝);E. 大麦表皮穿透实验及各类型侵染菌丝所占比例(48 h)。**表示在P<0.01水平差异有统计学意义。
图5  稻瘟病菌野生型菌株Guy11与ΔMorei1-22 突变体在含细胞壁及氧化胁迫因子条件下的生长情况A. 各测试菌株在胁迫培养基上的生长情况;B. 各测试菌株的生长抑制率。CM:完全培养基;CR:刚果红。*表示在P<0.05水平差异有统计学意义,下同。
图6  MoREI1 基因缺失对稻瘟病菌附着胞形成过程中糖原移动及降解速率的影响A. 分生孢子染色情况;B. 各测试菌株分生孢子内的糖原转移情况统计;C. 各测试菌株附着胞内的糖原消耗情况统计。
图7  MoRei1互作蛋白的鉴定阳性对照: 酿酒酵母野生型菌株BY4741中导入质粒pGADT7+pGBKT7-53;阴性对照: 酿酒酵母野生型菌株BY4741中导入质粒pGADT7+pGBKT7-lam。AD: 激活域; BD: DNA结合域。
图8  MoREI1 基因缺失对MoAlb1细胞核定位的影响
1 Jr, WOOLFORD J L, BASERGA S J. Ribosome biogenesis in the yeast Saccharomyces cerevisiae [J]. Genetics, 2013, 195(3): 643-681. DOI:10.1534/genetics.113.153197
doi: 10.1534/genetics.113.153197
2 GERHARDY S, MENET A M, PEÑA C, et al. Assembly and nuclear export of pre-ribosomal particles in budding yeast[J]. Chromosoma, 2014, 123(4): 327-344. DOI:‍10.1007/ s00412-014-0463-z
doi: ?10.1007/
3 NERURKAR P, ALTVATER M, GERHARDY S, et al. Eukaryotic ribosome assembly and nuclear export[J]. International Review of Cell and Molecular Biology, 2015, 319: 107-140. DOI:10.1016/bs.ircmb.2015.07.002
doi: 10.1016/bs.ircmb.2015.07.002
4 GADAL O, STRAUß D, KESSL J, et al. Nuclear export of 60S ribosomal subunits depends on Xpo1p and requires a nuclear export sequence-containing factor, Nmd3p, that associates with the large subunit protein Rpl10p[J]. Molecular and Cell Biology, 2001, 21(10): 3405-3415. DOI:‍10.1128/MCB.21.10.3405-3415.2001
doi: ?10.1128/MCB.21.10.3405-3415.2001
5 BRADATSCH B, KATAHIRA J, KOWALINSKI E, et al. Arx1 functions as an unorthodox nuclear export receptor for the 60S preribosomal subunit[J]. Molecular Cell, 2007, 27(5): 767-779. DOI:10.1016/j.molcel.2007.06.034
doi: 10.1016/j.molcel.2007.06.034
6 LEBRETON A, SAVEANU C, DECOURTY L, et al. A functional network involved in the recycling of nucleocytoplasmic pre-60S factors[J]. The Journal of Cell Biology, 2006, 173(3): 349-360. DOI:‍10.1083/jcb.200510080
doi: ?10.1083/jcb.200510080
7 YAO W, ROSER D, KÖHLER A, et al. Nuclear export of ribosomal 60S subunits by the general mRNA export receptor Mex67-Mtr2[J]. Molecular Cell, 2007, 26(1): 51-62. DOI:10.1016/j.molcel.2007.02.018
doi: 10.1016/j.molcel.2007.02.018
8 BAßLER J, KLEIN I, SCHMIDT C, et al. The conserved Bud20 zinc finger protein is a new component of the ribosomal 60S subunit export machinery[J]. Molecular and Cellular Biology, 2012, 32(24): 4898-4912. DOI:‍10.1128/MCB.00910-12
doi: ?10.1128/MCB.00910-12
9 MEYER A E, HOOVER L A, CRAIG E A. The cytosolic J-protein Jjj1 and Rei1 function in the removal of the pre-60S subunit factor Arx1[J]. Journal of Biological Chemistry, 2010, 285(2): 961-968. DOI:10.1074/jbc.M109.038349
doi: 10.1074/jbc.M109.038349
10 KEMMLER S, OCCHIPINIT L, VEISU M, et al. Yvh1 is required for a late maturation step in the 60S biogenesis pathway[J]. The Journal of Cell Biology, 2009, 186(6): 863-880. DOI:10.1083/jcb.200904111
doi: 10.1083/jcb.200904111
11 TALBOT N J. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea [J]. Annual Review of Microbiology, 2003, 57(1): 177-202. DOI:‍10.1146/annurev.micro.57.030502.090957
doi: ?10.1146/annurev.micro.57.030502.090957
12 EBBOLE D J. Magnaporthe as a model for understanding host-pathogen interactions[J]. Annual Review of Phytopathology, 2007, 45(1): 437-456. DOI:‍10.1146/annurev .phyto.45.062806.094346
doi: ?10.1146/annurev
13 LIU X Y, QIAN B, GAO C Y, et al. The putative protein phosphatase MoYvh1 functions upstream of MoPdeH to regulate the development and pathogenicity in Magnaporthe oryzae [J]. Molecular Plant-Microbe Interactions, 2016, 29(6): 496-507. DOI:10.1094/MPMI-11-15-0259-R
doi: 10.1094/MPMI-11-15-0259-R
14 CAO H J, HUANG P Y, ZHANG L L, et al. Characterization of 47 Cys2-His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae [J]. New Phytologist, 2016, 211(3): 1035-1051. DOI:10.1111/nph.13948
doi: 10.1111/nph.13948
15 王春燕.稻瘟病菌热激蛋白基因(MHF6MHF15)及去泛素化酶基因(MoUBP14)的功能研究[D].杭州:浙江大学,2018:16-17. DOI:10.3389/fmicb.2018.00769
WANG C Y. Functional analysis of the heat shock protein genes (MHF6 and MHF15) and deubiquitinating enzyme gene (MoUBP14) in Magnaporthe oryzae [D]. Hangzhou: Zhejiang University, 2018: 16-17. (in Chinese with English abstract)
doi: 10.3389/fmicb.2018.00769
16 TALBOT N J, EBBOLE D J, HAMER J E. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea [J]. The Plant Cell, 1993, 5(11): 1575-1590. DOI:10.1105/tpc.5.11.1575
doi: 10.1105/tpc.5.11.1575
17 岳晓凤.稻瘟病菌两个致病相关基因ZNF1CKS1的鉴定及生物学功能分析[D].杭州:浙江大学,2015:27-28.
YUE X F. Identification and functional analysis of two pathogenicity-related genes, ZNF1 and CKS1 in Magnaporthe oryzae [D]. Hangzhou: Zhejiang University, 2015: 27-28. (in Chinese with English abstract)
18 IWASE M, TOH-E A. Ybr267w is a new cytoplasmic protein belonging to the mitotic signaling network of Saccharomyces cerevisiae [J]. Cell Structure and Function, 2004, 29(1): 1-15. DOI:10.1247/csf.29.1
doi: 10.1247/csf.29.1
19 PETER M, NEIMAN A M, PARK H O, et al. Functional analysis of the interaction between the samll GTP binding protein Cdc42 and the Ste20 protein kinase in yeast[J]. The EMBO Journal, 1996, 15(24): 7046-7059. DOI:10.1002/j.1460-2075.1996.tb01096.x
doi: 10.1002/j.1460-2075.1996.tb01096.x
20 DOLAN J W, KIRKMAN C, FIELDS S. The yeast Ste12 protein binds to the DNA sequence mediating pheromone induction[J]. PNAS, 1989, 86(15): 5703-5707. DOI:10.1073/pnas.86.15.5703
doi: 10.1073/pnas.86.15.5703
21 CHOU S, LANE S, LIU H P. Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae [J]. Molecular and Cellular Biology, 2006, 16(13): 4794-4805. DOI:10.1128/MCB.02053-05
doi: 10.1128/MCB.02053-05
22 THINES E, WEBER R W S, TALBOT N J. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea [J]. The Plant Cell, 2000, 12(9): 1703-1718. DOI:10.1105/tpc.12.9.1703
doi: 10.1105/tpc.12.9.1703
[1] 李德葆  金庆超  董海涛 . 稻瘟病菌附着胞发育相关信号传递研究进展[J]. 浙江大学学报(农业与生命科学版), 2006, 32(3): 257-264.
[2] 李南羿  柴荣耀  Fulai Ran  郭泽建. OsiWRKY基因的水稻转化和转基因水稻抗病性分析[J]. 浙江大学学报(农业与生命科学版), 2005, 31(6): 697-700.
[3] Ngueko R B  沈瑛  王洪凯  林福呈  徐同. 湖南省部分病圃稻瘟菌的遗传多样性的RAPD分析[J]. 浙江大学学报(农业与生命科学版), 2004, 30(4): 355-362.