Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (1): 1-13    DOI: 10.3785/j.issn.1008-9209.2022.05.161
综述     
小麦族全基因组测序研究进展
邝刘辉(),李琪,张国平()
浙江大学农业与生物技术学院,浙江 杭州 310058
Advances on whole genome sequencing in Triticeae
Liuhui KUANG(),Qi LI,Guoping ZHANG()
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
 全文: PDF(922 KB)   HTML
摘要:

小麦族是禾本科植物中最重要的粮食作物来源之一,包括小麦、大麦、黑麦等麦类作物,全球年产量高达9亿t,约占全部谷类产量的30%。小麦族物种基因组庞大,重复序列比例高,且倍性水平多样,因此其从头测序和组装难度相对较大。近年来,随着三代长读长测序技术和针对复杂基因组的组装算法不断发展,以及测序成本显著下降,越来越多的小麦族物种的全基因组测序工作相继完成。本文综述了小麦族中小麦属、大麦属、黑麦属、偃麦草属和山羊草属共计17个物种(包括亚种)的全基因组研究进展,包括测序技术、拼装策略、组装质量、基因组和基因功能的主要分析内容等,旨在为更复杂的植物基因组测序和基因组学研究提供一定的理论与技术参考。

关键词: 小麦族基因组全基因组测序小麦属大麦属黑麦属偃麦草属山羊草属    
Abstract:

The Triticeae provides the important cereal crops, such as wheat, barley, and rye, which produces approximately 9×108 t annually, accounting for about 30% of the total global cereal production. However, Triticeae genomes are relatively difficult to be de novo sequenced and assembled due to their large genome size, a high proportion of repeat sequences, and different ploidy levels. With the rapid development of third-generation long read sequencing technologies and assembly algorithms designed for complex genomes, and also the falling cost of genome sequencing in recent years, more and more Triticeae species have been successfully sequenced. In this study, we reviewed the advances on the whole genome sequencing of 17 Triticeae species (including subspecies), including Triticum, Hordeum, Secale, Elytrigia, and Aegilops, in aspects of sequencing technology, assembly strategy and quality, and the major research contents associated with genomes and gene functions. This review may provide the references for sequencing strategies and genomic studies of other more complex plant genomes.

Key words: Triticeae    genome    whole genome sequencing    Triticum    Hordeum    Secale    Elytrigia    Aegilops
收稿日期: 2022-05-16 出版日期: 2023-03-07
CLC:  S512.1  
基金资助: 浙江省重点研发计划项目(2020C0202);浙江省重大科技专项(2021C02064-3)
通讯作者: 张国平     E-mail: kuangliuhui@zju.edu.cn;Zhanggp@zju.edu.cn
作者简介: 邝刘辉(https://orcid.org/0000-0003-1504-739X),E-mail:kuangliuhui@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邝刘辉
李琪
张国平

引用本文:

邝刘辉,李琪,张国平. 小麦族全基因组测序研究进展[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 1-13.

Liuhui KUANG,Qi LI,Guoping ZHANG. Advances on whole genome sequencing in Triticeae. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 1-13.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.05.161        https://www.zjujournals.com/agr/CN/Y2023/V49/I1/1

物种/基因组

Species/genome

品种

Cultivar

组装大小

Assembly

size/Gb

染色体

序列大小

Chromosome

sequence size/

Gb

Contig

N50/kb

Scaffold

N50/kb

HC基因数量

HC gene

number

BUSCO

评估指数

BUSCO

assessment

index/%

测序方法

Sequencing strategy

发表年份

Year

published

文献

Reference

普通小麦/AABBDD

T. aestivum/AABBDD

中国春5.42NANANA

94 000~

96 000

NA全基因组鸟枪法/Roche 454测序2012[11]
中国春10.24NANA2.3124 20195.4分染色体测序、BAC测序、Illumina PE2014[12]
中国春13.43NA16.788.8104 091NA

Illumina PE/MP、链特异性RNA-Seq、

PacBio全长转录组

2017[13]
中国春15.34NA232.7NANA98.3Illumina PE、PacBio SMRT2017[14]
中国春14.5014.0751.822 800107 89199.0

BAC测序、Illumina PE/MP、

DeNovoMAGIC2、10×Genomics、

BioNano光学图谱、Hi-C、POPSEQ遗

传图谱

2018[10]
W79849.127.108.324.8NANA

全基因组鸟枪法/Illumina PE/MP、

POPSEQ遗传图谱

2015[16]
Fielder15.0014.70NA20 700116 48097.1

PacBio循环共识测序(CCS)、Omni-C

染色体构象捕获

2021[17]
泛基因组14.3~14.913.9~14.2

48.9~

83.5

10 200~

49 700

118 734~

120 967

97.6~98.4

Illumina PE/MP、DeNovoMAGIC3、10×

Genomics、Nanopore、Hi-C、POPSEQ遗传图谱

2020[18]

西藏半野生小麦/AABBDD

T. aestivum ssp. tibetanum/

AABBDD

藏181714.7114.0566.337 600118 07899.5

Illumina PE/MP、DeNovoMAGIC3、10×

Genomics、借助‘中国春’参考基因组

(2018)进行染色体挂载

2020[19]

乌拉尔图小麦/AA

T. urartu/AA

G18124.66NA3.463.734 87986.3全基因组鸟枪法/Illumina PE2013[22]
G18124.864.67344.03 70037 516NA

BAC测序、PacBio SMRT、10×

Genomics、BioNano光学图谱

2018[23]

粗山羊草/DD

A. tauschii/DD

AL8/784.231.724.557.634 498NA

全基因组鸟枪法/Illumina PE、Roche

454测序、遗传图谱

2013[24]
AL8/784.794.03NANA17 093NA全基因组鸟枪法、BAC测序、遗传图谱2013[25]
AL8/784.34NA486.8521.7NANAMaSuRCA混合拼装(Illumina PE/MP、PacBio SMRT)2017[26]
AL8/784.313.99112.612 10042 82897.0

Illumina PE/MP、DeNovoMAGIC2、

PacBio SMRT、高密度SNP遗传图谱

2017[27]
AL8/784.234.0393.131 70039 62297.8

BAC测序、全基因组鸟枪法、PacBio

SMRT、BioNano光学图谱

2017[28]

野生二粒小麦/AABB

T. turgidum var.

dicoccoides/AABB

Zavitan10.5010.1057.47 00065 01298.4

Illumina PE、DeNovoMAGIC2、

Hi-C、遗传图谱

2017[4]

硬粒小麦/AABB

T. turgidum var. durum/

AABB

Svevo10.459.9656.26 00066 55998.1

Illumina PE/MP、DeNovoMAGIC2、

Hi-C、高密度SNP遗传图谱

2019[29]

大麦/HH

H. vulgare/HH

Morex1.87NA1.4NA26 159NA

全基因组鸟枪法/Illumina PE/MP、

Roche 454测序、RNA-Seq

2012[30]
Morex4.794.54/4.6379.01 90039 73492.5

BAC测序、Illumina PE/MP、Roche

454测序、BioNano光学图谱,Hi-C、POPSEQ遗传图谱

2017[31]
Morex4.654.34NA40 20032 78798.9

TRITEX(Illumina PE/MP、10×

Genomics、Hi-C)

2019[32]
Morex4.504.2069 600118 90035 82798.6

TRITEX(IIllumina PE/MP、10×

Genomics、Hi-C)、PacBio SMRT、

PacBio CCS、Nanopore

2021[33]
Haruna Nijo2.00NANA3.530 60680.2Illumina PE、Roche 454测序2016[34]
Haruna Nijo4.284.13NA18 90049 52496.0

TRITEX(Illumina PE/MP、10×

Genomics、Hi-C)

2022[35]
AAC Synergy4.854.1440.02 30046 84593.9

TRITEX(Illumina PE/MP、10×

Genomics、Hi-C)、PacBio SMRT

2021[36]
Golden Promise4.134.1322.44 10045 15495.2

Illumina PE/MP、Dovetail Chicago、

Hi-C

2020[37]
泛基因组3.8~4.53.8~4.5NA

5 000~

42 700

35 859~

40 044

NAMinia+SOAPdenovo+TRITEX(Illumina PE/MP、10×Genomics、Hi-C)、DeNovoMAGIC3、POPSEQ遗传图谱2020[38]

青稞/HH

H. vulgare var. coeleste/HH

拉萨钩芒3.893.4818.1242.036 151NA

全基因组鸟枪法/Illumina PE、Morex

基因组(2012)和遗传图谱进行染色体

挂载

2015[39]
藏青320

3.73/

4.84

4.595.9171.146 787NA

Illumina PE/MP、PacBio SMRT、Morex

V1基因组(2017)进行染色体挂载

2018[40]
拉萨钩芒4.00NA1 6004 00040 45795.7Illumina MP、PacBio SMRT、遗传图谱2020[41]

钝稃野大麦/HH

H. spontaneum/HH

AWCS276/WB14.28NA35.4724.936 39595.3全基因组鸟枪法/Illumina PE2020[5]
OUH6024.504.32NA11 30043 37597.1

TRITEX(Illumina PE/MP、10×

Genomics、Hi-C)

2021[6]

海大麦/XaXa

H. marinum/XaXa

H5593.823.696 830524 47041 04598.4

Illumina PE、PacBio SMRT、10×

Genomics、Hi-C

2022[46]

黑麦/RR

S. cereale/RR

Lo72.80NA1.79.527 78489.0Illumina PE/MP2017[48]
威宁黑麦7.747.25480.41 000 00045 59696.7

TRITEX(Illumina PE/MP、10×

Genomics、Hi-C)、PacBio SMRT、遗传

图谱、BioNano光学图谱

2021[47]

长穗偃麦草/EE

E. elongatum/EE

NA4.634.542 20073 20044 47497.6

Illumina PE/MP、DeNovoMAGIC3、

PacBio SMRT、10×Genomics、

BioNano光学图谱、Hi-C

2020[7]

二角山羊草/S*S*

A. bicornis/S*S*

TB015.645.388 700NA40 22295.1Nanopore、Hi-C、Illumina短读长测序2022[21]

高大山羊草/S*S*

A. longissima/S*S*

TL055.805.231 100NA37 20194.0Nanopore、Hi-C、Illumina短读长测序2022[21]
AEG-6782-26.705.928.73 80031 18397.5

TRITEX(Illumina PE/MP、10×

Genomics、Hi-C)

2022[49]

西尔斯山羊草/S*S*

A. searsii/S*S*

searsii5.344.66600NA37 99592.9Nanopore、Hi-C、Illumina短读长测序2022[21]

沙融山羊草/S*S*

A. sharonensis/S*S*

TH025.895.141 000NA38 44093.2Nanopore、Hi-C、Illumina短读长测序2022[21]
AS_16446.706.30NA12 30030 62696.5

全基因组鸟枪法/Illumina MP、10×

Genomics、Hi-C

2022[50]

拟斯卑尔脱山羊草/SS

A. speltoides/SS

TS014.113.761 800NA37 60793.8Nanopore、Hi-C、Illumina短读长测序2022[21]
AEG-9674-15.144.0215.63 10036 92896.4

TRITEX(Illumina PE/MP、10×

Genomics、Hi-C)

2022[49]
表1  小麦族全基因组已测序物种
1 SUN Y Q, SHANG L G, ZHU Q H, et al. Twenty years of plant genome sequencing: achievements and challenges[J]. Trends in Plant Science, 2022, 27(4): 391-401. DOI: 10.1016/j.tplants.2021.10.006
doi: 10.1016/j.tplants.2021.10.006
2 FEUILLET C, SALSE J. Comparative genomics in the Triticeae[M]//FEUILLET C, MUEHLBAUER G J. Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models. Vol. 7. YorkNew, USA: Springer, 2009: 451-477. DOI: 10.1007/978-0-387-77489-3
doi: 10.1007/978-0-387-77489-3
3 Food and Agriculture Organization of the United Nations. FAOSTAT[EB/OL]. [2022-01-03].
4 AVNI R, NAVE M, BARAD O, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication[J]. Science, 2017, 357(6346): 93-96. DOI: 10.1126/science.aan0032
doi: 10.1126/science.aan0032
5 LIU M, LI Y, MA Y L, et al. The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley[J]. Plant Biotechnology Journal, 2020, 18(2): 443-456. DOI: 10.1111/pbi.13210
doi: 10.1111/pbi.13210
6 SATO K, MASCHER M, HIMMELBACH A, et al. Chromosome-scale assembly of wild barley accession “OUH602”[J]. G3: Genes Genomes Genetics, 2021, 11(10): jkab244. DOI: 10.1093/g3journal/jkab244
doi: 10.1093/g3journal/jkab244
7 WANG H W, SUN S L, GE W Y, et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat[J]. Science, 2020, 368(6493): eaba5435. DOI: 10.1126/science.aba5435
doi: 10.1126/science.aba5435
8 傅向东,刘倩,李振声,等.小麦基因组研究现状与展望[J].中国科学院院刊,2018,33(9):909-914. DOI:10.16418/j.issn.1000-3045.2018.09.003
FU X D, LIU Q, LI Z S, et al. Research achievement and prospect development on wheat genome[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(9): 909-914. (in Chinese with English abstract)
doi: 10.16418/j.issn.1000-3045.2018.09.003
9 SHI X L, LING H Q. Current advances in genome sequencing of common wheat and its ancestral species[J]. Crop Journal, 2018, 6(1): 15-21. DOI: 10.1016/j.cj.2017.11.001
doi: 10.1016/j.cj.2017.11.001
10 International Wheat Genome Sequencing Consortium. Shifting the limits in wheat research and breeding using a fully annotated reference genome[J]. Science, 2018, 361(6403): eaar7191. DOI: 10.1126/science.aar7191
doi: 10.1126/science.aar7191
11 BRENCHLEY R, SPANNAGL M, PFEIFER M, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing[J]. Nature, 2012, 491(7426): 705-710. DOI: 10.1038/nature11650
doi: 10.1038/nature11650
12 International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome[J]. Science, 2014, 345(6194): 1251788. DOI: 10.1126/science.1251788
doi: 10.1126/science.1251788
13 CLAVIJO B J, VENTURINI L, SCHUDOMA C, et al. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations[J]. Genome Research, 2017, 27(5): 885-896. DOI: 10.1101/gr.217117.116
doi: 10.1101/gr.217117.116
14 ZIMIN A V, PUIU D, HALL R, et al. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum [J]. GigaScience, 2017, 6(11): gix097. DOI: 10.1093/gigascience/gix097
doi: 10.1093/gigascience/gix097
15 ZHU T T, WANG L, RIMBERT H, et al. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly[J]. The Plant Journal, 2021, 107(1): 303-314. DOI: 10.1111/tpj.15289
doi: 10.1111/tpj.15289
16 CHAPMAN J A, MASCHER M, BULUC A, et al. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome[J]. Genome Biology, 2015, 16: 26. DOI: 10.1186/s13059-015-0582-8
doi: 10.1186/s13059-015-0582-8
17 SATO K, ABE F, MASCHER M, et al. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ‘Fielder’[J]. DNA Research, 2021, 28(3): dsab008. DOI: 10.1093/dnares/dsab008
doi: 10.1093/dnares/dsab008
18 WALKOWIAK S, GAO L L, MONAT C, et al. Multiple wheat genomes reveal global variation in modern breeding[J]. Nature, 2020, 588(7837): 277-283. DOI: 10.1038/s41586-020-2961-x
doi: 10.1038/s41586-020-2961-x
19 GUO W L, XIN M M, WANG Z H, et al. Origin and adaptation to high altitude of Tibetan semi-wild wheat[J]. Nature Communications, 2020, 11: 5085. DOI: 10.1038/s41467-020-18738-5
doi: 10.1038/s41467-020-18738-5
20 MARCUSSEN T, SANDVE S R, HEIER L, et al. Ancient hybridizations among the ancestral genomes of bread wheat[J]. Science, 2014, 345(6194): 1250092. DOI: 10.1126/science.1250092
doi: 10.1126/science.1250092
21 LI L F, ZHANG Z B, WANG Z H, et al. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome[J]. Molecular Plant, 2022, 15(3): 488-503. DOI: 10.1016/j.molp.2021.12.019
doi: 10.1016/j.molp.2021.12.019
22 LING H Q, ZHAO S C, LIU D C, et al. Draft genome of the wheat A-genome progenitor Triticum urartu [J]. Nature, 2013, 496(7443): 87-90. DOI: 10.1038/nature11997
doi: 10.1038/nature11997
23 LING H Q, MA B, SHI X L, et al. Genome sequence of the progenitor of wheat A subgenome Triticum urartu [J]. Nature, 2018, 557(7705): 424-428. DOI: 10.1038/s41586-018-0108-0
doi: 10.1038/s41586-018-0108-0
24 JIA J Z, ZHAO S C, KONG X Y, et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation[J]. Nature, 2013, 496(7443): 91-95. DOI: 10.1038/nature12028
doi: 10.1038/nature12028
25 LUO M C, GU Y Q, YOU F M, et al. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor[J]. PNAS, 2013, 110(19): 7940-7945. DOI: 10.1073/pnas.1219082110
doi: 10.1073/pnas.1219082110
26 ZIMIN A V, PUIU D, LUO M C, et al. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm[J]. Genome Research, 2017, 27(5): 787-792. DOI: 10.1101/gr.213405.116
doi: 10.1101/gr.213405.116
27 ZHAO G Y, ZOU C, LI K, et al. The Aegilops tauschii genome reveals multiple impacts of transposons[J]. Nature Plants, 2017, 3(12): 946-955. DOI: 10.1038/s41477-017-0067-8
doi: 10.1038/s41477-017-0067-8
28 LUO M C, GU Y Q, PUIU D, et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii [J]. Nature, 2017, 551(7681): 498-502. DOI: 10.1038/nature24486
doi: 10.1038/nature24486
29 MACCAFERRI M, HARRIS N S, TWARDZIOK S O, et al. Durum wheat genome highlights past domestication signatures and future improvement targets[J]. Nature Genetics, 2019, 51(5): 885-895. DOI: 10.1038/s41588-019-0381-3
doi: 10.1038/s41588-019-0381-3
30 International Barley Genome Sequencing Consortium. A physical, genetic and functional sequence assembly of the barley genome[J]. Nature, 2012, 491(7426): 711-716. DOI: 10.1038/nature11543
doi: 10.1038/nature11543
31 MASCHER M, GUNDLACH H, HIMMELBACH A, et al. A chromosome conformation capture ordered sequence of the barley genome[J]. Nature, 2017, 544(7651): 427-433. DOI: 10.1038/nature22043
doi: 10.1038/nature22043
32 MONAT C, PADMARASU S, LUX T, et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools[J]. Genome Biology, 2019, 20: 284. DOI: 10.1186/s13059-019-1899-5
doi: 10.1186/s13059-019-1899-5
33 MASCHER M, WICKER T, JENKINS J, et al. Long-read sequence assembly: a technical evaluation in barley[J]. The Plant Cell, 2021, 33(6): 1888-1906. DOI: 10.1093/plcell/koab077
doi: 10.1093/plcell/koab077
34 SATO K, TANAKA T, SHIGENOBU S, et al. Improvement of barley genome annotations by deciphering the Haruna Nijo genome[J]. DNA Research, 2016, 23(1): 21-28. DOI: 10.1093/dnares/dsv033
doi: 10.1093/dnares/dsv033
35 SAKKOUR A, MASCHER M, HIMMELBACH A, et al. Chromosome-scale assembly of barley cv. ‘Haruna Nijo’ as a resource for barley genetics[J]. DNA research, 2022, 29(1): dsac001. DOI: 10.1093/dnares/dsac001
doi: 10.1093/dnares/dsac001
36 XU W, TUCKER J R, BEKELE W A, et al. Genome assembly of the Canadian two-row malting barley cultivar AAC Synergy[J]. G3: Genes Genomes Genetics, 2021, 11(4): jkab031. DOI: 10.1093/g3journal/jkab031
doi: 10.1093/g3journal/jkab031
37 SCHREIBER M, MASCHER M, WRIGHT J, et al. A genome assembly of the barley ‘transformation reference’ cultivar Golden Promise[J]. G3: Genes Genomes Genetics, 2020, 10(6): 1823-1827. DOI: 10.1534/g3.119.401010
doi: 10.1534/g3.119.401010
38 JAYAKODI M, PADMARASU S, HABERER G, et al. The barley pan-genome reveals the hidden legacy of mutation breeding[J]. Nature, 2020, 588(7837): 284-289. DOI: 10.1038/s41586-020-2947-8
doi: 10.1038/s41586-020-2947-8
39 ZENG X Q, LONG H, WANG Z, et al. The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau[J]. PNAS, 2015, 112(4): 1095-1100. DOI: 10.1073/pnas.1423628112
doi: 10.1073/pnas.1423628112
40 DAI F, WANG X L, ZHANG X Q, et al. Assembly and analysis of a qingke reference genome demonstrate its close genetic relation to modern cultivated barley[J]. Plant Biotech-nology Journal, 2018, 16(3): 760-770. DOI: 10.1111/pbi.12826
doi: 10.1111/pbi.12826
41 ZENG X Q, XU T, LING Z H, et al. An improved high-quality genome assembly and annotation of Tibetan hulless barley[J]. Scientific Data, 2020, 7: 139. DOI: 10.1038/s41597-020-0480-0
doi: 10.1038/s41597-020-0480-0
42 GARTHWAITE A J, STEUDLE E, COLMER T D. Water uptake by roots of Hordeum marinum: formation of a barrier to radial O2 loss does not affect root hydraulic conductivity[J]. Journal of Experimental Botany, 2006, 57(3): 655-664. DOI: 10.1093/jxb/erj055
doi: 10.1093/jxb/erj055
43 GARTHWAITE A J, VON BOTHMER R, COLMER T D. Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots[J]. Journal of Experimental Botany, 2005, 56(419): 2365-2378. DOI: 10.1093/jxb/eri229
doi: 10.1093/jxb/eri229
44 ALAMRI S A, BARRETT-LENNARD E G, TEAKLE N L, et al. Improvement of salt and waterlogging tolerance in wheat: comparative physiology of Hordeum marinum-Triticum aestivum amphiploids with their H. marinum and wheat parents[J]. Functional Plant Biology, 2013, 40(11): 1168-1178. DOI: 10.1071/fp12385
doi: 10.1071/fp12385
45 ISLAM S, MALIK A I, ISLAM A K M R, et al. Salt tolerance in a Hordeum marinum-Triticum aestivum amphiploid, and its parents[J]. Journal of Experimental Botany, 2007, 58(5): 1219-1229. DOI: 10.1093/jxb/erl293
doi: 10.1093/jxb/erl293
46 KUANG L H, SHEN Q F, CHEN L Y, et al. The genome and gene editing system of sea barleygrass provide a novel platform for cereal domestication and stress tolerance studies[J]. Plant Communications, 2022, 3(5): 100333. DOI: 10.1016/j.xplc.2022.100333
doi: 10.1016/j.xplc.2022.100333
47 LI G W, WANG L J, YANG J P, et al. A high-quality genome assembly highlights rye genomic characteristics and agrono-mically important genes[J]. Nature Genetics, 2021, 53(4): 574-584. DOI: 10.1038/s41588-021-00808-z
doi: 10.1038/s41588-021-00808-z
48 BAUER E, SCHMUTZER T, BARILAR I, et al. Towards a whole-genome sequence for rye (Secale cereale L.)[J]. The Plant Journal, 2017, 89(5): 853-869. DOI: 10.1111/tpj.13436
doi: 10.1111/tpj.13436
49 AVNI R, LUX T, MINZ-DUB A, et al. Genome sequences of three Aegilops species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement[J]. The Plant Journal, 2022, 110(1): 179-192. DOI: 10.1111/tpj.15664
doi: 10.1111/tpj.15664
50 YU G T, MATNY O, CHAMPOURET N, et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62 [J]. Nature Communications, 2022, 13: 1607. DOI: 10.1038/s41467-022-29132-8
doi: 10.1038/s41467-022-29132-8
51 MUNNS R, JAMES R A, XU B, et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene[J]. Nature Biotechnology, 2012, 30(4): 360-364. DOI: 10.1038/nbt.2120
doi: 10.1038/nbt.2120
[1] 徐丽华,苏菲,李军星,余斌,叶十一,杨富文,邓利荣,毛慧敏,袁秀芳. 2016—2020年浙江地区猪圆环病毒2型分子流行病学分析[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 644-652.
[2] 陈国户,王浩,李广,唐小燕,汪承刚,张磊,侯金锋,袁凌云. 白菜PRX基因家族的鉴定与生物信息学分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 677-686.
[3] 李夏,夏文君,毛鍶超,卢舒婷,莫开昆,廖敏,周继勇,郑肖娟. 血清4型禽腺病毒浙江株的分离鉴定及其全基因组序列分析[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 635-646.
[4] 苗苗,徐彩煌,黄子惠,张小东,张兴,吴永平. 传染性法氏囊病病毒结构的冷冻电镜初步分析[J]. 浙江大学学报(农业与生命科学版), 2019, 45(4): 506-511.
[5] 马姆·茂尼,朱军. 关联分析揭示显性效应对玉米巢式定位群体抽穗期的重要性(英文)[J]. 浙江大学学报(农业与生命科学版), 2017, 43(2): 146-152.
[6] 段忠取,朱军. 全基因组关联分析研究进展[J]. 浙江大学学报(农业与生命科学版), 2015, 41(4): 385-393.
[7] 郝心颖, 朱军. 全基因组关联分析SGRQ遗传变异与吸烟的关系(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 431-439.
[8] 林张翔, 王营营, 付菲, 叶楚玉, 樊龙江. 东乡野生稻叶绿体基因组拼接及系统进化分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 397-403.
[9] 张斌, 朱军. 吸烟和性别对身体质量指数遗传结构的影响(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 421-430.
[10] 叶晓倩, 赵忠辉, 朱全武, 王营营, 林张翔, 叶楚玉, 樊龙江, 须海荣. 茶树“龙井43”叶绿体基因组测序及其系统进化(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 404-412.
[11] 许昌巍, 朱军. 吸烟对控制FEV1/FVC比率的基因上位性及性别互作效应的影响(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 413-420.
[12] 刘海岚,朱军 ;. 通过多基因组比较的方法在5种绿球蓝细菌中识别基因组岛[J]. 浙江大学学报(农业与生命科学版), 2010, 36(5): 473-484.
[13] 徐幼平 徐秋芳 宋晓毅等 . 病毒诱导的基因沉默[J]. 浙江大学学报(农业与生命科学版), 2008, 34(2): 119-131.
[14] 宋振辉 郭万柱 殷华平. 猪传染性胃肠炎病毒SC-Y株全基因组克隆及特性分析[J]. 浙江大学学报(农业与生命科学版), 2007, 33(2): 143-149.
[15] 樊龙江  郭兴益. 从水稻基因组序列中挖掘生物信息[J]. 浙江大学学报(农业与生命科学版), 2005, 31(4): 355-361.