Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (5): 583-593    DOI: 10.3785/j.issn.1008-9209.2021.12.031
植物保护     
结球甘蓝香叶基芳樟醇合酶基因的克隆及功能分析
汪一萍1(),葛洋1,张译心1,MUNAWAR Asim1,张亚东1,毛黎娟2,祝增荣1,周文武1()
1.浙江大学农业与生物技术学院昆虫科学研究所, 农业农村部作物病虫分子生物学重点实验室, 杭州 310058
2.浙江大学农生环测试中心, 杭州 310058
Cloning and functional analysis of geranyllinalool synthase gene from Brassica oleracea
Yiping WANG1(),Yang GE1,Yixin ZHANG1,Asim MUNAWAR1,Yadong ZHANG1,Lijuan MAO2,Zengrong ZHU1,Wenwu ZHOU1()
1.Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
2.Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
 全文: PDF(3360 KB)   HTML
摘要:

萜类化合物在植物防御病虫害等胁迫中具有重要的生物学和生态学功能,香叶基芳樟醇合酶(geranyllinalool synthase, GES)是萜类合成途径中的关键酶。为解析结球甘蓝中GES的功能,本研究采用聚合酶链反应方法克隆了该基因,检测其在生物胁迫诱导下的表达特性,并对其蛋白质的原核表达特性及生化功能进行了研究和测定。结果表明:BoGES蛋白质的氨基酸序列在十字花科植物中高度保守;小菜蛾、丁香假单胞菌(Pst DC3000)、水杨酸、茉莉酸甲酯诱导均能上调BoGES基因的表达,说明该基因参与生物胁迫诱导的反应;该蛋白质能够以香叶基香叶基焦磷酸为底物催化合成香叶基芳樟醇。此外,用“Y”型嗅觉仪测定玉米螟赤眼蜂对不同浓度香叶基芳樟醇的行为反应,发现香叶基芳樟醇能够吸引赤眼蜂。综上所述,本研究对结球甘蓝中的BoGES基因功能进行了系统研究,为进一步研究十字花科植物中萜类合酶及萜类化合物的生物学和生态学功能提供了科学依据。

关键词: 结球甘蓝萜类合酶生物胁迫香叶基芳樟醇香叶基芳樟醇合酶    
Abstract:

Terpenoids play important biological and ecological roles in plant defense against the pests’ stress, and geranyllinalool synthase (GES) is a key enzyme in the biosynthetic pathway of terpenoids. In order to understand the function of GES in Brassica oleracea, wecloned the BoGES gene by polymerase chain reaction and analyzed its expression levels under different biological stresses, after that we studied the recombinant protein by prokaryotic expression and analyzed its biochemical functions. The results showed that the amino acid sequence of BoGESprotein was highly conserved in Brassicaceae, indicating its conserved function in these plants. The expression of BoGES gene could be significantly induced by diamondback moth (DBM) damage, Pst DC3000 infection, and salicylic acid and methyl jasmonate treatments, suggesting its functions in response to the biological stresses. BoGES protein could catalyze the formation of geranyllinalool from the substrate geranylgeranyl diphosphate (GGPP). Moreover, we measured the choice response of the parasitoid wasps to different concentrations of geranyllinalool via the Y-tube olfactometer, and found that this chemical could attract the parasitoid wasps. In conclusion, this study systemically analyzed the function of BoGES gene in B. oleracea, which could provide the scientific basis for further study of the biological and ecological functions of terpene synthase and terpenoids in Brassicaceae plants.

Key words: Brassica oleracea    terpene synthase    biological stress    geranyllinalool    geranyllinalool synthase
收稿日期: 2021-12-03 出版日期: 2022-11-02
CLC:  S 635.1  
基金资助: 浙江省教育厅科研项目(Y202045605);中央高校基本科研业务费专项资金(2021FZZX003-02-10);国家自然科学基金项目(31701798);浙江大学实验技术研究项目(SJS201915)
通讯作者: 周文武     E-mail: wangyiping@zju.edu.cn;wenwuzhou@zju.edu.cn
作者简介: 汪一萍(https://orcid.org/0000-0003-0668-8136),E-mail:wangyiping@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
汪一萍
葛洋
张译心
MUNAWAR Asim
张亚东
毛黎娟
祝增荣
周文武

引用本文:

汪一萍,葛洋,张译心,MUNAWAR Asim,张亚东,毛黎娟,祝增荣,周文武. 结球甘蓝香叶基芳樟醇合酶基因的克隆及功能分析[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 583-593.

Yiping WANG,Yang GE,Yixin ZHANG,Asim MUNAWAR,Yadong ZHANG,Lijuan MAO,Zengrong ZHU,Wenwu ZHOU. Cloning and functional analysis of geranyllinalool synthase gene from Brassica oleracea. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 583-593.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.12.031        https://www.zjujournals.com/agr/CN/Y2022/V48/I5/583

基因名称

Gene name

作用

Function

正向引物序列(5′→3′)

Forward primer sequence (5′→3′)

反向引物序列(5′→3′)

Reverse primer sequence (5′→3′)

GES基因克隆ATGAAGTTCCCTTACGGTTCTTCGCACCTTGCTTCTATGA
GAPDH内参基因TCCACCATTGATTCTTCTCTGTCAGCCAAATCAACAACTCTC
GESq目的基因CGCTCAACAACTTGACTTACGGCAAGACCTCTAGATATGC
表1  引物信息
图1  BoGES 基因PCR产物电泳图1:未酶切的质粒;2:经Pvu Ⅱ酶切的质粒;M:1 kb DNA分子标志物。图中蓝色箭头所指为目的条带。
图2  结球甘蓝 BoGES 基因序列的分析A. BoGES基因起始密码子上游区域中顺式作用元件预测;B. BoGES蛋白质三级结构预测;C. BoGES与AtGES、NbGES氨基酸序列的比对结果(红色方框表示蛋白质保守结构域)。
图3  不同植物 GES 基因的系统进化树
图4  小菜蛾危害(A)和细菌 Pst DC3000侵染(B)后 BoGES 基因表达水平**、***、****分别表示相同处理时间不同处理组间在P<0.01、P<0.001、P<0.000 1水平差异有统计学意义。
图5  外源MeJA(A)和SA(B)处理后 BoGES 基因表达量*、**、***分别表示相同处理时间不同处理组间在P<0.05、P<0.01、P<0.001水平差异有统计学意义。
图6  BoGES重组蛋白诱导表达的SDS-PAGE检测A. 不同浓度IPTG(16 ℃)诱导过夜后BoGES重组蛋白表达的电泳图;B. BoGES重组蛋白包涵体经复性后的电泳图。1:蛋白质标志物;2:破菌上清液;3:破菌沉淀;4:破菌沉淀用洗脱液1洗涤后的上清液;5:破菌沉淀用洗脱液1洗涤后的沉淀;6:破菌沉淀用洗脱液2洗涤后的上清液;7:破菌沉淀用洗脱液2洗涤后的沉淀;8:复性蛋白。
图7  GC-MS检测BoGES重组蛋白产物A. 以GGPP为底物的酶活反应色谱图;B. 以GPP为底物的酶活反应色谱图;C~D. 主峰谱图1与香叶基芳樟醇标准谱图。
图8  玉米螟赤眼蜂对不同浓度香叶基芳樟醇的嗅觉反应*、**分别表示在P<0.05和P<0.01水平差异有统计学和高度统计学意义。Single asterisk (*) and double asterisks (**) indicate significant and highly significant differences at the 0.05 and 0.001 probability levels, respectively.Fig. 8‍ Olfactory reaction of T. ostriniae to different concentrations of geranyllinalool
1 ZENG L T, ZHOU Y, GUI J D, et al. Formation of volatile tea constituent indole during the oolong tea manufacturing process[J]. Journal of Agricultural & Food Chemistry, 2016, 64(24): 5011-5019. DOI:10.1021/acs.jafc.6b01742
doi: 10.1021/acs.jafc.6b01742
2 BOUTANAEV A M, MOSES T, ZI J C, et al. Investigation of terpene diversification across multiple sequenced plant genomes[J]. PNAS, 2015, 112(1): E81-E88. DOI:10.1073/pnas.1419547112
doi: 10.1073/pnas.1419547112
3 刘琬菁,吕海舟,李滢,等.植物萜类合酶研究新进展[J].植物生理学报,2017,53(7):1139-1149. DOI:10.13592/j.cnki.ppj.2016.0513
LIU W J, LÜ H Z, LI Y, et al. The new advance of terpene synthase research in the plant[J]. Plant Physiology Journal, 2017, 53(7): 1139-1149. (in Chinese with English abstract)
doi: 10.13592/j.cnki.ppj.2016.0513
4 黄宇萍.小菜蛾诱导的甘蓝挥发性物质及其效应[D].福州:福建农林大学,2012.
HUANG Y P. Volatiles from Brassica oleracea infested by Plutella xylostella (L.) and their effects[D]. Fuzhou: Fujian Agriculture and Forestry University, 2012. (in Chinese with English abstract)
5 TUMEN I, ELLER F J, GLAUSEN C A, et al. Antifungal activity of heartwood extracts from three Juniperus species[J]. BioResources, 2012, 8(1): 12-20.
6 CHEN X J, CHEN H, YUAN J S, et al. The rice terpene synthase gene OsTPS19 functions as an (S)-limonene synthase in planta, and its overexpression leads to enhanced resistance to the blast fungus Magnaporthe oryzae [J]. Plant Biotechnology Journal, 2018, 16(10): 1778-1787. DOI:10.1111/pbi.12914
doi: 10.1111/pbi.12914
7 MCGARVEY D J, CROTEAU R. Terpenoid metabolism[J]. The Plant Cell, 1995, 7(7): 1015-1026. DOI:10.2307/3870054
doi: 10.2307/3870054
8 VRANOVÁ E, COMAN D, GRUISSEM W. Structure and dynamics of the isoprenoid pathway network[J]. Molecular Plant, 2012, 5(2): 318-333. DOI:10.1093/mp/sss015
doi: 10.1093/mp/sss015
9 李海亮,高星,徐福利,等.芍药花精油化学成分及其抗氧化活性[J].西北农林科技大学学报(自然科学版),2017,45(5):204-210. DOI:10.13207/j.cnki.jnwafu.2017.05.028
LI H L, GAO X, XU F L, et al. Chemical composition and antioxidant activities of essential oil from Paeonia lactiflora flowers[J]. Journal of Northwest A&F University (Natural Science Edition), 2017, 45(5): 204-210. (in Chinese with English abstract)
doi: 10.13207/j.cnki.jnwafu.2017.05.028
10 张丽芳,房桂珍,秦旭荣.一种替普瑞酮的制备方法:CN103739470A[P].2014-04-23[2021-11-21]. . DOI:10.1088/0256-307x/23/11/034
ZHANG L F, FANG G Z, QING X R. [P]. 2014-04-23[2021-11-21]. (in Chinese)
doi: 10.1088/0256-307x/23/11/034
11 PAREJA M, QVARFORDT E, WEBSTER B, et al. Herbivory by a phloem-feeding insect inhibits floral volatile production[J]. PLoS ONE, 2012, 7(2): e31971. DOI:10.1371/journal.pone.0031971
doi: 10.1371/journal.pone.0031971
12 刘丹凤.陆地棉间接防御物质萜烯同系物的合成代谢研究[D].北京:中国农业科学院,2018. DOI:10.26464/epp2018011
LIU D F. Anabolism of homoterpenes involved in indirect defense of Gossipium hirsutum [D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese with English abstract)
doi: 10.26464/epp2018011
13 LEE S, BADIEYAN S, BEVAN D R, et al. Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis [J]. PNAS, 2010,107(49):21205-21210. DOI:10.1073/pnas.1009975107
doi: 10.1073/pnas.1009975107
14 BRILLADA C, NISHIHARA M, SHIMODA T, et al. Metabolic engineering of the C16 homoterpene TMTT in Lotus japonicus through overexpression of (E, E)-geranyllinalool synthase attracts generalist and specialist predators in different manners[J]. New Phytologist, 2013, 200(4): 1200-1211. DOI:10.1111/nph.12442
doi: 10.1111/nph.12442
15 HERDE M, GÄRTNER K, KÖLLNER T G, et al. Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-homoterpene TMTT[J]. The Plant Cell, 2008, 20(4): 1152-1168. DOI:10.1105/tpc.106.049478
doi: 10.1105/tpc.106.049478
16 LI W, WANG L N, ZHOU F, et al. Overexpression of the homoterpene synthase gene, OsCYP92C21, increases emissions of volatiles mediating tritrophic interactions in rice[J]. Plant, Cell and Environment, 2020, 44(3): 948-963. DOI:10.1111/pce.13924
doi: 10.1111/pce.13924
17 LI T, BLANDE J D, HOLOPAINEN J K. Atmospheric transformation of plant volatiles disrupts host plant finding[J]. Scientific Reports, 2016, 6: 33851. DOI:10.1038/srep33851
doi: 10.1038/srep33851
18 PICKETT J A, KHAN Z R. Plant volatile-mediated signalling and its application in agriculture: successes and challenges[J]. New Phytologist, 2016, 212(4): 856-870. DOI:10.1111/nph.14274
doi: 10.1111/nph.14274
19 ARIMURA G, GARMS S, MAFFEI M, et al. Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling[J]. Planta, 2008, 227(2): 453-464. DOI:10.1007/s00425-007-0631-y
doi: 10.1007/s00425-007-0631-y
20 SU P, HU T Y, LIU Y J, et al. Functional characterization of NES and GES responsible for the biosynthesis of (E)-nerolidol and (E, E)-geranyllinalool in Tripterygium wilfordii [J]. Scientific Reports, 2017, 7: 40851. DOI:10.1038/srep40851
doi: 10.1038/srep40851
21 LIU G F, LIU J J, HE Z R, et al. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis [J]. Plant, Cell and Environment, 2018, 41(1): 176-186. DOI:10.1111/pce.13080
doi: 10.1111/pce.13080
22 FU J Y, REN F, LU X, et al. A tandem array of ent-kaurene synthases in maize with roles in gibberellin and more specialized metabolism[J]. Plant Physiology, 2016, 170(2): 742-751. DOI:10.1104/pp.15.01727
doi: 10.1104/pp.15.01727
23 李威,林拥军,周菲.萜烯同系物DMNT和TMTT的研究进展[J].植物保护学报,2018,45(5):946-953. DOI:10.13802/j.cnki.zwbhxb.2018.2018924
LI W, LIN Y J, ZHOU F. The recent research progress on DMNT and TMTT in plants[J]. Journal of Plant Protection, 2018, 45(5): 946-953. (in Chinese with English abstract)
doi: 10.13802/j.cnki.zwbhxb.2018.2018924
[1] 张彤,汪一萍,葛洋,NTIRI Eric,周文武. 结球甘蓝α-法呢烯合成酶基因的鉴定与功能分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 182-192.