Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (4): 525-532    DOI: 10.3785/j.issn.1008-9209.2021.07.111
动物科学与动物医学     
抹茶对高脂饮食诱导的小鼠肝脏脂质积累和炎症反应的保护作用及机制
周继红1(),余月儿1,丁乐佳1,徐平1,毛立民1,2,王岳飞1()
1.浙江大学农业与生物技术学院茶叶研究所,杭州 310058
2.浙江省茶叶集团股份有限公司,杭州 310058
Protective effect and mechanism of matcha on liver lipid accumulation and inflammatory response induced by high-fat diet in mice
Jihong ZHOU1(),Yue'er YU1,Lejia DING1,Ping XU1,Limin MAO1,2,Yuefei WANG1()
1.Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
2.Zhejiang Tea Group Co. , Ltd. , Hangzhou 310058, China
 全文: PDF(1482 KB)   HTML
摘要:

本研究比较分析了4个茶树品种抹茶主要化学成分含量的差异,并选取‘茂绿’品种抹茶对高脂饮食诱导的C57BL/6J肥胖小鼠模型进行0.1%、0.5%、1.0% 3种剂量的膳食补充。结果表明,抹茶能够在不影响摄食量的情况下改善高脂饮食导致的体质量增长、血糖水平升高和肝脏脂质积累,且效果呈现出浓度依赖性。进一步对小鼠肝脏功能、氧化应激水平和炎症反应情况进行检测,发现膳食添加1.0%的抹茶能够显著抑制高脂饮食诱导的肝脏谷丙转氨酶(alanine aminotransferase, ALT)和谷草转氨酶(aspartate aminotransferase, AST)活性异常升高,提升抗氧化酶活性,降低炎症因子表达水平,并下调Toll样受体4(Toll-like receptor 4, TLR4)和下游MyD88基因的表达。综上所述,抹茶能够有效改善食源性肥胖和高脂饮食诱发的肝脏脂肪性病变与炎症反应,对TLR4/MyD88信号通路的抑制是其潜在的作用机制。

关键词: 抹茶肥胖非酒精性脂肪性肝病氧化应激炎症因子    
Abstract:

In this study, we analyzed the main chemical components of matcha made from four tea cultivars, established a high-fat diet-induced C57BL/6J obese mouse model, and selected ‘Maolü’ matcha as an experimental dietary supplement with three doses of 0.1%, 0.5% and 1.0%. The results showed that matcha could reduce body mass gain, blood glucose level rise and liver lipid accumulation induced by the high-fat diet without affecting food intake, and the effect was concentration-dependent. Furthermore, we detected the liver function, oxidative stress level and inflammatory response in mice, and the results showed that dietary supplementation of 1.0% matcha significantly inhibited the abnormal increase of activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) induced by a high-fat diet in liver, and increased the activity of antioxidant enzyme. The expression levels of inflammatory factors, Toll-like receptor 4 (TLR4) and MyD88 were also significantly reduced. In conclusion, matcha effectively improves obesity-related fatty liver lesions and inflammation, and its potential mechanism is to inhibit the activation of the TLR4/MyD88 signaling pathway.

Key words: matcha    obesity    non-alcoholic fatty liver disease    oxidative stress    inflammatory cytokines
收稿日期: 2021-07-11 出版日期: 2022-09-03
CLC:  S 571.1  
基金资助: 中国博士后科学基金第68批面上项目(2020M681868)
通讯作者: 王岳飞     E-mail: zhoujihong@zju.edu.cn;zdcy@zju.edu.cn
作者简介: 周继红(https://orcid.org/0000-0003-2315-8612),E-mail:zhoujihong@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周继红
余月儿
丁乐佳
徐平
毛立民
王岳飞

引用本文:

周继红,余月儿,丁乐佳,徐平,毛立民,王岳飞. 抹茶对高脂饮食诱导的小鼠肝脏脂质积累和炎症反应的保护作用及机制[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 525-532.

Jihong ZHOU,Yue'er YU,Lejia DING,Ping XU,Limin MAO,Yuefei WANG. Protective effect and mechanism of matcha on liver lipid accumulation and inflammatory response induced by high-fat diet in mice. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 525-532.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.07.111        https://www.zjujournals.com/agr/CN/Y2022/V48/I4/525

基因名称

Gene name

上游引物(5′→3′)

Forward primer (5′→3′)

下游引物(5′→3′)

Reverse primer (5′→3′)

TNF-αGACCCTCACACTCAGATCATCTTCTGCTACGACGTGGGCTACAG
IL-6TCTACTCGGCAAACCTAGTGCGTTATTCTGACCACAGTGAGGAATGTCCA
IL-1βTCCAGGATGAGGACATGAGCACGAACGTCACACACCAGCAGGTTA
TLR4TGAGGACTGGGTGAGAAATGAGCCTGCCATGTTTGAGCAATCTCAT
MyD88TCCACATCCTCCCTTCCCGAGACAACCACCACCATCC
GAPDHCCTCGTCCCGTAGACAAAATGTGAGGTCAATGAAGGGGTCGT
表1  实时荧光定量PCR引物序列

茶树品种

Tea cultivar

含水率

Moisture content

水浸出物

Water extract

游离氨基酸

Free amino acid

可溶性糖

Soluble sugar

茶多酚

Tea polyphenols

咖啡碱

Caffeine

迎霜Yingshuang4.11±0.16c38.45±0.42b4.87±0.20b5.48±0.12b11.76±0.25b2.47±0.20a
鸠坑Jiukeng3.49±0.16d39.38±0.34a4.90±0.19b5.85±0.09a12.01±0.35ab2.43±0.05a
中茶108Zhongcha 1084.85±0.18b36.92±0.43c4.27±0.34c5.04±0.07c11.41±0.22c2.35±0.05b
茂绿Maolü5.41±0.13a37.06±0.27c5.14±0.18a5.81±0.15a12.75±0.34a2.29±0.03b
表2  不同品种抹茶主要生化成分含量 (%)

茶树品种

Tea cultivar

GCEGCCECEGCGGCGECGCG

迎霜

Yingshuang

0.20±0.02c0.56±0.03b0.31±0.07a0.15±0.02c6.21±0.25c1.11±0.07d0.69±0.05c0.14±0.00a

鸠坑

Jiukeng

0.56±0.05a0.85±0.12a0.28±0.03a0.31±0.03a6.55±0.16bc1.63±0.14b1.11±0.16ab0.08±0.01c

中茶108

Zhongcha 108

0.25±0.01b0.72±0.15a0.24±0.02a0.22±0.01b6.77±0.26b1.31±0.04c0.82±0.11bc0.06±0.00c

茂绿

Maolü

0.27±0.02b0.86±0.14a0.23±0.03a0.24±0.08b7.48±0.39a1.79±0.10a1.33±0.25a0.11±0.00b
表3  不同品种抹茶儿茶素单体含量 (%)
参量 ParameterNCDHFDHMLHMMHMH

初始体质量

Initial body mass/g

20.54±0.76a21.39±1.33a20.69±0.58a20.85±0.58a19.71±1.32a

最终体质量

Final body mass/g

25.68±1.22c35.82±2.91a32.46±1.80b32.58±1.05b32.68±2.64b

体质量增量

Body mass increase/g

5.14±0.77c14.43±1.79a11.77±2.16b11.73±0.97b12.97±1.92ab

摄食量

Food intake/(g/d)

2.44±0.22a2.50±0.18a2.50±0.03a2.49±0.14a2.44±0.05a

空腹血糖水平

Fasting blood glucose level/(mmol/L)

6.40±1.20c8.68±0.64a8.16±1.40ab7.98±0.96b7.92±0.26b
表4  抹茶对不同组小鼠体质量、摄食量以及空腹血糖水平的影响
图1  抹茶对不同组小鼠肝脏脂质积累的影响在HE染色中,蓝色为肝脏细胞核,红色为细胞质,未着色的脂肪在显微镜图中呈现白色空泡;在油红O染色中,蓝色为肝脏细胞核,红色为脂肪。
图 2  抹茶对不同组小鼠肝脏功能与氧化应激水平的影响短栅上不同小写字母表示在P<0.05水平差异有统计学意义。
图 3  抹茶对不同组小鼠肝脏炎症因子和 TLR4/MyD88 通路基因表达的影响短栅上不同小写字母表示同种炎症因子或基因在不同处理组间在P<0.05水平差异有统计学意义。
1 MONGRAW-CHAFFIN M, FOSTER M C, ANDERSON C A M, et al. Metabolically healthy obesity, transition to metabolic syndrome, and cardiovascular risk[J]. Journal of the American College of Cardiology, 2018, 71(17): 1857-1865. DOI:10.1016/j.jacc.2018.02.055
doi: 10.1016/j.jacc.2018.02.055
2 ESLAM M, VALENTI L, ROMEO S. Genetics and epigenetics of NAFLD and NASH: clinical impact[J]. Journal of Hepatology, 2018, 68(2): 268-279. DOI:10.1016/j.jhep.2017.09.003
doi: 10.1016/j.jhep.2017.09.003
3 HUANG J B, LI W J, LIAO W J, et al. Green tea polyphenol epigallocatechin-3-gallate alleviates nonalcoholic fatty liver disease and ameliorates intestinal immunity in mice fed a high-fat diet[J]. Food & Function, 2020, 11(11): 9924-9935. DOI:10.1039/d0fo02152k
doi: 10.1039/d0fo02152k
4 ROCHA A, BOLIN A P, CARDOSO C A L, et al. Green tea extract activates AMPK and ameliorates white adipose tissue metabolic dysfunction induced by obesity[J]. European Journal of Nutrition, 2016, 55(7): 2231-2244. DOI:10.1007/s00394-015-1033-8
doi: 10.1007/s00394-015-1033-8
5 刘东娜,聂坤伦,杜晓,等.抹茶品质的感官审评与成分分析[J].食品科学,2014,35(2):168-172. DOI:10.7506/spkx1002-6630-201402031
LIU D N, NIE K L, DU X, et al. Sensory evaluation and chemical composition of matcha[J]. Food Science, 2014, 35(2): 168-172. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-201402031
6 ZHOU J H, LIN H Y, XU P, et al. Matcha green tea prevents obesity-induced hypothalamic inflammation via suppressing the JAK2/STAT3 signaling pathway[J]. Food & Function, 2020, 11(10): 8987-8995. DOI:10.1039/d0fo01500h
doi: 10.1039/d0fo01500h
7 YING L, KONG D D, GAO Y Y, et al. In vitro antioxidant activity of phenolic-enriched extracts from Zhangping Narcissus tea cake and their inhibition on growth and metastatic capacity of 4T1 murine breast cancer cells[J]. Journal of Zhejiang University—Science B, 2018, 19(3): 199-210. DOI:10.1631/jzus.B1700162
doi: 10.1631/jzus.B1700162
8 全国茶叶标准化技术委员会. 抹茶: [S].北京:中国标准出版社,2017. DOI:10.16993/bak
National Technical Committee 339 on Tea of Standardization Administration of China.Matcha: GB/T 34778—2017[S]. Beijing: Standards Press of China, 2017. (in Chinese)
doi: 10.16993/bak
9 LI Y, RAHMAN S U, HUANG Y Y, et al. Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity[J]. The Journal of Nutritional Biochemistry, 2020, 78: 108324. DOI:10.1016/j.jnutbio.2019.108324
doi: 10.1016/j.jnutbio.2019.108324
10 LU J, FANG B C, HUANG Y X, et al. Epigallocatechin-3-gallate protects against 1, 3-dichloro-2-propanol-induced lipid accumulation in C57BL/6J mice[J]. Life Sciences, 2018, 209: 324-331. DOI:10.1016/j.lfs.2018.08.007
doi: 10.1016/j.lfs.2018.08.007
11 SELLAYAH D, CAGAMPANG F R, COX R D. On the evolutionary origins of obesity: a new hypothesis[J]. Endocrinology, 2014, 155(5): 1573-1588. DOI:10.1210/en.2013-2103
doi: 10.1210/en.2013-2103
12 YOUNOSSI Z M, KOENIG A B, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI:10.1002/hep.28431
doi: 10.1002/hep.28431
13 WREE A, BRODERICK L, CANBAY A, et al. From NAFLD to NASH to cirrhosis: new insights into disease mechanisms[J]. Nature Reviews Gastroenterology & Hepatology, 2013, 10(11): 627-636. DOI:10.1038/nrgastro.2013.149
doi: 10.1038/nrgastro.2013.149
14 KOLÁČKOVÁ T, KOLOFIKOVA K, SYTAŘOVÁ I, et al. Matcha tea: analysis of nutritional composition, phenolics and antioxidant activity[J]. Plant Foods for Human Nutrition, 2020, 75(1): 48-53. DOI:10.1007/s11130-019-00777-z
doi: 10.1007/s11130-019-00777-z
15 KANG H H, KIM I K, LEE H I, et al. Chronic intermittent hypoxia induces liver fibrosis in mice with diet-induced obesity via TLR4/MyD88/MAPK/NF-κB signaling pathways[J]. Biochemical and Biophysical Research Communications, 2017, 490: 349-355. DOI:10.1016/j.bbrc.2017.06.047
doi: 10.1016/j.bbrc.2017.06.047
16 HOTAMISLIGIL G S. Inflammation, metaflammation and immunometabolic disorders[J]. Nature, 2017, 542(7640): 177-185. DOI:10.1038/nature21363
doi: 10.1038/nature21363
17 CANI P D, AMAR J, IGLESIAS M A, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56(7): 1761-1772. DOI:10.2337/db06-1491
doi: 10.2337/db06-1491
18 DE ASSUNCÃO S N F, SORTE N C A B, DE ARAGÃO DANTAS ALVES C, et al. Inflammatory cytokines and non-alcoholic fatty liver disease (NAFLD) in obese children and adolescents[J]. Nutricion Hospitalaria, 2018, 35: 78-83. DOI:10.20960/nh.1317
doi: 10.20960/nh.1317
19 HENAO-MEJIA J, ELINAV E, JIN C C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity[J]. Nature, 2012, 482(7384): 179-185. DOI:10.1038/nature10809
doi: 10.1038/nature10809
20 NAGPAL K, PLANTINGA T S, WONG J, et al. A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling[J]. Journal of Biological Chemistry, 2009, 284(38): 25742-25748. DOI:10.1074/jbc.M109.014886
doi: 10.1074/jbc.M109.014886
21 MILANSKI M, DEGASPERI G, COOPE A, et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity[J]. Journal of Neuroscience, 2009, 29(2): 359-370. DOI:10.1523/Jneurosci.2760-08.2009
doi: 10.1523/Jneurosci.2760-08.2009
[1] 姜炫旭,周辉,叶钰珊,刘仲华,魏月德,杨江帆,金恩惠,何普明,李博,吴媛媛,屠幼英. 铁观音对阿尔茨海默病小鼠行为的影响及机制[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 68-77.
[2] 李泳欣, 邹艺轩, 刘建新, 刘红云. 奶牛氧化应激及天然植物抗氧化提取物研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 549-554.
[3] 朱涵,谭莎莎,杨虹,王凌. 丁酸钠对饮食诱导肥胖大鼠的作用[J]. 浙江大学学报(农业与生命科学版), 2015, 41(2): 195-200.
[4] 崔晓曼1, 于海宁2, 徐洁岚2, 陈中婷3, 沈生荣1*. 黄樱椒提取物干预脂肪代谢的实验动物研究[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 335-342.
[5] 范婷婷, 法鲁克, 方芳, 蒋益虹*. 荷叶总生物碱降脂减肥作用的体内外试验[J]. 浙江大学学报(农业与生命科学版), 2013, 39(2): 141-148.