Please wait a minute...
浙江大学学报(农业与生命科学版)  2020, Vol. 46 Issue (6): 708-717    DOI: 10.3785/j.issn.1008-9209.2020.06.231
园艺学     
‘永泰’杨梅亲本鉴定及其单核苷酸多态性遗传变异分析
陈方永1(),胡丹2,颜帮国1,倪海枝1,王引1
1.浙江省柑橘研究所,浙江 台州 318026
2.温州市特产站,浙江 温州 325000
Identification of ‘Yongtai’ bayberry’s parents and analysis of their genetic variation by single nucleotide polymorphism markers
Fangyong CHEN1(),Dan HU2,Bangguo YAN1,Haizhi NI1,Yin WANG1
1.Citrus Research Institute of Zhejiang Province, Taizhou 318026, Zhejiang, China
2.Wenzhou Specialty Station, Wenzhou 325000, Zhejiang, China
 全文: PDF(2428 KB)   HTML
摘要:

采用基因组重测序和单核苷酸多态性(single nucleotide polymorphism, SNP)系统进化树构建等方法,研究‘永泰’和9个相关品种的亲缘关系,并开发了4 025个SNP核心标记用于遗传和育种研究。根据SNP位点的变异性计算遗传相似系数(genetic similarity, GS),得出‘永泰’与亲本‘硬丝’的GS为0.997 83。系统进化树构建结果表明,10个品种分为2组,其中:‘黑晶’‘东岙早梅’‘乌紫’‘荸荠’‘木叶’5个品种聚为一组;‘早大梅’‘早佳’‘软丝’‘永泰’‘硬丝’5个品种聚为一组,且‘硬丝’与变异品种‘永泰’聚为一小支。同时,‘永泰’在叶片大小、叶缘、叶脉等形态学性状和果实口感上与亲本存在显著差异。通过‘永泰’与参考基因组对比注释,共得到4 660个单核苷酸变异位点。根据研究结果推断,‘永泰’叶片和果实产生显著形态变异的原因可能是SNP位点产生了转换和颠换以及核苷酸序列发生了突变。由此可见,‘永泰’既有亲本‘硬丝’的基本特征,也有与其形态学和果实口感上存在的典型差异。

关键词: 杨梅亲缘关系单核苷酸多态性标记开发变异    
Abstract:

In order to study the genetic relationship and genetic mechanism of ‘Yongtai’ and related nine bayberry (Myrica rubra) accessions, the methods of genomic re-sequencing and phylogenetic tree construction of core single nucleotide polymorphism (SNP), etc. were used, and also 4 025 core SNP markers were developed for further genetic and breeding research. The results calculated by genetic similarity (GS) showed that the GS between ‘Yongtai’ and ‘Yingsi’ was 0.997 83. Moreover, ten bayberry accessions were divided into two groups by phylogenetic tree construction analysis of SNP. ‘Heijing’, ‘Dong’aozaomei’, ‘Wuzi’, ‘Biqi’, ‘Muye’ were grouped together, and ‘Zaodamei’, ‘Zaojia’, ‘Ruansi’, ‘Yongtai’ and ‘Yingsi’ were grouped together, where ‘Yingsi’ and ‘Yongtai’ were gathered into a branch. At the same time, there were significant differences between ‘Yongtai’ and its parents in leaf size, leaf margin, leaf vein and fruit flavor. Through comparison and annotation of ‘Yongtai’ and the reference genome, a total of 4 660 differential genes were obtained. In conclusion, the significant morphological variation in leaves and fruits of ‘Yongtai’ may be attributed to the transition and transversion of SNP and the mutation of nucleotide sequence. So ‘Yongtai’ not only has the basic traits of its parent ‘Yingsi’, but also has its typically morphological traits as large leaves and large fruits.

Key words: Myrica rubra    genetic relationship    single nucleotide polymorphism marker development    mutation
收稿日期: 2020-06-23 出版日期: 2020-12-31
CLC:  S 667.6  
基金资助: 浙江省“十三五”杨梅育种专项(2016C02052-2);浙江省农业科学院学科建设项目(〔2018〕8号);浙江省台州市科技项目(台科2020-03)
通讯作者: 陈方永     E-mail: cfy17266@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈方永
胡丹
颜帮国
倪海枝
王引

引用本文:

陈方永,胡丹,颜帮国,倪海枝,王引. ‘永泰’杨梅亲本鉴定及其单核苷酸多态性遗传变异分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 708-717.

Fangyong CHEN,Dan HU,Bangguo YAN,Haizhi NI,Yin WANG. Identification of ‘Yongtai’ bayberry’s parents and analysis of their genetic variation by single nucleotide polymorphism markers. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 708-717.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.06.231        http://www.zjujournals.com/agr/CN/Y2020/V46/I6/708

编号 No.品种名 Accession name来源 Origin
1黑晶 Heijing温岭 Wenling
2东岙早梅 Dong’aozaomei黄岩 Huangyan
3早大梅 Zaodamei临海 Linhai
4早佳 Zaojia兰溪 Lanxi
5木叶 Muye兰溪 Lanxi
6乌紫 Wuzi象山 Xiangshan
7荸荠 Biqi余姚 Yuyao
8永泰 Yongtai泰顺 Taishun
9软丝 Ruansi龙海 Longhai
10硬丝 Yingsi龙海 Longhai
表1  10个杨梅品种名称及来源

品种名

Accession name

高质量序列数

Number of clean reads

Q20/%Q30/%GC/%

深度

Depth

基因覆盖度

Gene coverage/%

黑晶 Heijing24 403 07896.8091.4538.2110×90.66
东岙早梅 Dong’aozaomei25 685 70296.7791.3838.2410×90.80
早大梅 Zaodamei25 855 19096.1489.8938.2810×90.68
早佳 Zaojia26 801 06296.6291.0838.4410×90.72
木叶 Muye32 372 83296.9491.7338.7112×90.81
乌紫 Wuzi27 039 39296.6291.0538.4010×90.83
荸荠 Biqi24 000 83496.9391.7338.0390.54
永泰 Yongtai29 095 66496.9991.8638.7811×90.96
软丝 Ruansi25 146 23897.2792.4338.1810×90.67
硬丝 Yingsi24 542 61497.0992.0838.3190.34
表 2  杨梅10个品种重测序及参考基因组比对统计

品种名

Accession

name

SNP数量

SNP

number

SNP转换数

SNP transition

number

SNP颠换数

SNP transversion

number

转换与颠换比

Ratio of

transition to

transversion

杂合SNP

位点数量

Heterozygosity SNP loci number

纯合SNP

位点数量

Homozygosity SNP loci number

杂合类型SNP位点比率

Heterozygosity

SNP loci ratio/%

黑晶 Heijing1 250 509827 709422 8001.95793 532456 97763.45

东岙早梅

Dong’aozaomei

1 179 561779 944399 6171.95676 820502 74157.37
早大梅 Zaodamei1 301 448863 944437 5041.97816 655484 79362.74
早佳 Zaojia1 301 945864 625437 3201.97815 860486 08562.66
木叶 Muye1 152 151762 262389 8891.95641 181510 97055.65
乌紫 Wuzi1 187 401785 393402 0081.95689 469497 93258.06
荸荠 Biqi1 188 250782 750405 5001.93688 379499 87157.93
永泰 Yongtai1 292 022856 459435 5631.96826 807465 21563.99
软丝 Ruansi1 315 280873 599441 6811.97829 584485 69663.07
硬丝 Yingsi1 248 390826 928421 4621.96779 320469 07062.42
表 3  杨梅10个品种与参考基因组之间的SNP开发与检测
图1  核心SNP位点在杨梅染色体上的数量(A)及分布(B)

品种名

Accession name

黑晶

Heijing

东岙早梅

Dong’aozaomei

早大梅

Zaodamei

早佳

Zaojia

木叶

Muye

乌紫

Wuzi

荸荠

Biqi

永泰

Yongtai

软丝

Ruansi

硬丝

Yingsi

黑晶Heijing1.000 00

东岙早梅

Dong’aozaomei

0.892 791.000 00
早大梅Zaodamei0.832 280.823 531.000 00
早佳Zaojia0.832 330.823 200.979 631.000 00
木叶Muye0.865 510.856 970.833 920.833 961.000 00
乌紫Wuzi0.896 710.913 360.830 560.829 470.857 791.000 00
荸荠Biqi0.882 800.865 400.837 310.835 030.870 320.864 291.000 00
永泰Yongtai0.846 420.840 570.881 470.879 950.847 530.836 870.851 721.000 00
软丝Ruansi0.833 030.820 110.976 330.979 190.832 980.828 990.834 310.881 231.000 00
硬丝Yingsi0.843 980.838 820.878 160.877 670.843 570.836 460.851 990.977 830.877 501.000 00
表4  杨梅10个品种间的遗传相似性
图2  杨梅10个品种的核心SNP系统进化树

品种名

Accession name

纵径

LD/cm

横径

TD/cm

叶形

Leaf shape

叶柄

Petiole

叶缘缺刻

LMN

绿色程度

Greenness

先端形状

Apex shape

基部形状

Base shape

厚度

Thickness

叶脉凸出

Vein bulge

黑晶 Heijing8.862.91匙形微缺楔形薄到中上表面

东岙早梅

Dong’aozaomei

9.332.57倒披针形短到中波状楔形下表面
早大梅 Zaodamei9.602.72倒披针形锯齿状钝圆楔形均不
早佳 Zaojia10.283.05倒卵圆形波状广楔形均不
木叶 Muye9.152.65窄倒卵圆形急尖狭楔形中到厚均不
乌紫 Wuzi9.122.61倒披针形渐尖楔形下表面
荸荠 Biqi7.271.93倒披针形中到长楔形均不
永泰 Yongtai10.593.19窄倒卵圆形波状楔形中到厚下表面
软丝 Ruansi9.712.69倒卵圆形短到中波状微缺狭楔形薄至中均不
硬丝 Yingsi7.532.39倒卵圆形楔形中到厚均不
表5  杨梅10个品种叶片性状比较
图3  杨梅10个品种叶片形态比较
果实性状 Fruit trait永泰 Yongtai荸荠 Biqi硬丝 Yingsi
成熟期 Maturity06-03—06-0706-02—06-1306-02—06-10
果梗长度 Stalk length
果梗与果实分离难易程度 Difficulty of separating stem and fruit
果蒂凸环及凸环颜色 Fruity convex ring and convex ring color大,红色小,黄绿色中,红色
果实形状 Fruit shape圆形扁圆形近圆形
果实大小 Fruit size
果实颜色 Fruit color紫色紫色紫色
果面缝合线 Fruit suture
硬度 Hardness
肉柱先端形状 Pulp apex shape圆钝形圆钝形圆钝形
果肉与果核粘离性 Flesh and core separation粘连分离粘连
果核大小 Kernel size
糖度 Total soluble solid/%10.210.710.5
单果质量 Single fruit mass/g15.68.611.3
表6  ‘永泰’‘荸荠’和‘硬丝’果实性状描述
图4  ‘永泰’‘荸荠’和‘硬丝’果实形态比较
1 陈方永.‘东魁’杨梅(Myrica rubra cv. Dongkui)两个变异材料的发掘及鉴定.武汉:华中农业大学,2014.
CHEN F Y. Exploitation and identification of two mutants in ‘Dongkui’ Chinese bayberry (Myrica rubra). Wuhan: Huazhong Agricultural University, 2014. (in Chinese with English abstract)
2 MARTIN J, SCHACKWITZ W, LIPZEN A. Genomic sequence variation analysis by resequencing. Fungal Genomics, 2018,1775:229-239. DOI:10.1007/978-1-4939-7804-5_18
doi: 10.1007/978-1-4939-7804-5_18
3 ACQUADRO A, BARCHI L, PORTIS E, et al. Genome resequencing//PORTIS E, ACQUADRO A, LANTERI S. The Globe Artichoke Genome. Compendium of Plant Genomes. Cham, Switzerland: Springer, 2019:205-218.
4 YU Y, FU J, XU Y G, et al. Genome re-sequencing reveals the evolutionary history of peach fruit edibility. Nature Communications, 2018,9(1):1-13. DOI:10.1038/s41467-018-07744-3
doi: 10.1038/s41467-018-07744-3
5 CUENCA J, GARCIA-LOR A, NAVARRO L, et al. Citrus genetics and breeding//AL-KHAYRI J, JAIN S, JOHNSON D. Advances in Plant Breeding Strategies: Fruits. Cham, Switzerland: Springer, 2018:403-436.
6 BUTTON P. International Union for the Protection of New Varieties of Plants (UPOV) recommendations on varieties denominations. Acta Horticulture, 2008,799:191-200. DOI:10.17660/ActaHortic.2008.799.27
doi: 10.17660/ActaHortic.2008.799.27
7 李志远,于海龙,方智远,等.甘蓝SNP标记开发及主要品种的DNA指纹图谱构建.中国农业科学,2018,51(14):2771-2787. DOI:10.3864/j.issn.0578-1752.2018.14.014
LI Z Y, YU H L, FANG Z Y, et al. Development of SNP markers in cabbage and construction of DNA finger printing of main varieties. Scientia Agricultura Sinica, 2018,51(14):2771-2787. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2018.14.014
8 赵仁欣,李森业,郭瑞星,等.利用SNP芯片构建我国冬油菜参试品种DNA指纹图谱.作物学报,2018,44(7):956-965. DOI:10.3724/SP.J.1006.2018.00956
ZHAO R X, LI S Y, GUO R X, et al. Construction of DNA fingerprinting for Brassica napus varieties based on SNP chip. Acta Agronomica Sinica, 2018,44(7):956-965. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00956
9 孙正文,匡猛,马峙英,等.利用Cotton SNP63K芯片构建棉花品种的指纹图谱.中国农业科学,2017,50(24):4692-4704. DOI:10.3864/j.issn.0578-1752.2017.24.003
SUN Z W, KUANG M, MA Z Y, et al. Construction of cotton variety fingerprints using cotton SNP63K array. Scientia Agricultura Sinica, 2017,50(24):4692-4704. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.24.003
10 LI X L, SINGH J, QIN M F, et al. Development of an integrated 200K SNP genotyping array and application for genetic mapping, genome assembly improvement and GWAS in pear (Pyrus). Plant Biotechnology Journal, 2019,17(8):1582-1594. DOI:10.1111/pbi.13085
doi: 10.1111/pbi.13085
11 KIM K, OH Y, HAN H, et al. Genetic relationships and population structure of pears (Pyrus spp.) assessed with genome-wide SNPs detected by genotyping-by-sequencing. Horticulture, Environment, and Biotechnology, 2019,60(6):945-953. DOI:10.1007/s13580-019-00178-w
doi: 10.1007/s13580-019-00178-w
12 MA B Q, LIAO L, PENG Q, et al. Reduced representation genome sequencing reveals patterns of genetic diversity and selection in apple. Journal of Integrative Plant Biology, 2017,59(3):190-204. DOI:10.1111/jipb.12522
doi: 10.1111/jipb.12522
13 HARPER H, WINFIELD M O, COPAS L, et al. The long Ashton legacy: characterising United Kingdom west country cider apples using a genotyping by targeted sequencing approach. Plants, People, Planet, 2019,10:1-9. DOI:10.1002/ppp3.10074
doi: 10.1002/ppp3.10074
14 MICHELETTI D, DETTORI M T, MICALI S, et al. Whole-genome analysis of diversity and SNP-major gene association in peach germplasm. PLoS ONE, 2015,10(9):1-19. DOI:10.1371/journal.pone.0136803
doi: 10.1
15 CURK F, ANCILLO G, OLLITRAULT F, et al. Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties. PLoS ONE, 2015,10(5):1-25. DOI:10.1371/journal.pone.0125628
doi: 10.1371/journal.pone.0125628
16 CARUSO M, CASAS G LAS, SCAGLIONE D, et al. Detection of natural and induced mutations from next generation sequencing data in sweet orange bud sports. Acta Horticulturae Sinica, 2019,1230:1-6. DOI:10.17660/ActaHortic.2019.1230.15
doi: 10.17660/ActaHortic
17 王俊.枇杷(Eriobotrya japonica Lindl.)SNP位点筛选及遗传多样性分析.重庆:西南大学,2013.
WANG J. SNPs screening and genetic diversity analysis of loquat (Eriobotrya japonica Lindl.). Chongqing: Southwest University, 2013. (in Chinese with English abstract)
18 BENTLEY N, GRAUKE L J, KLEIN P. Genotyping by sequencing (GBS) and SNP marker analysis of diverse accessions of pecan (Carya illinoinensis). Tree Genetics and Genomes, 2019,15(8):1-17. DOI:10.1007/s11295-018-1314-5
doi: 10.1007/s11295-018-1314-5
19 贾慧敏.杨梅全基因组测序和雌雄性别控制遗传分析.杭州:浙江大学,2016.
JIA H M. The draft genome of Chinese bayberry(M. rubra) and genetic analysis of sex determination between male and female plants. Hangzhou: Zhejiang University, 2016. (in Chinese with English abstract)
20 刘路贤.栽培杨梅谱系地理、驯化起源及品种(系)间关系的研究.杭州:浙江大学,2016.
LIU L X. Studies of phylogeography domestication origin of Chinese bayberry (Morella rubra). Hangzhou: Zhejiang University, 2016. (in Chinese with English abstract)
21 YU D, ZHANG J, TAN G X, et al. An easily-performed high-throughput method for plant genomic DNA extraction. Analytical Biochemistry, 2019,569:28-30. DOI:10.1016/j.ab.2019.01.007
doi: 10.1016/j.ab
22 LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009,25(14):1754-1760. DOI:10.1093/bioinformatics/btp324
doi: 10.1093/bioinformatics/btp324
23 MCKENNA A, HANNA M, BANKS E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010,20:1297-1303. DOI:10.1101/gr.107524.110
doi: 10.1101/gr.107524.110
24 NEI M. Genetic distance between populations. American Naturalist, 1972,106:283-292.
25 NEI M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978,89(3):583-590.
26 TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011,28(10):2731-2739. DOI:10.1093/molbev/msr121
doi: 10.1093/molbev/msr121
27 JIA H M, JIA H J, CAI Q L, et al. The red bayberry genome and genetic basis of sex determination. Plant Biotechnology Journal, 2019,17:397-409. DOI:10.1111/pbi.12985
doi: 10.1111/pbi.12985
28 LAMO K, BHAT D J, KOUR K, et al. Mutation studies in fruit crops: a review. International Journal of Current Microbiology and Applied Sciences, 2017,6(12):3620-3633. DOI:10.20546/ijcmas.2017.612.418
doi: 10.20546/ijcmas.2017.612.418
29 王楠,张静,于蕾,等.仁果类果树资源育种研究进展Ⅱ:苹果种质资源、品质发育及遗传育种研究进展.植物遗传资源学报,2019,20(4):801-812. DOI:10.13430/j.cnki.jpgr.20190321001
WANG N, ZHANG J, YU L, et al. Progress on the resource and breeding of kernel fruits Ⅱ: progress on the germplasm resources, quality development and genetic breeding of apple in China. Journal of Plant Genetic Resources, 2019,20(4):801-812. (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.201903
30 陈学森,王楠,张宗营,等.仁果类果树资源育种研究进展Ⅰ:我国梨种质资源、品质发育及遗传育种研究进展.植物遗传资源学报,2019,20(4):791-800. DOI:10.13430/j.cnki.jpgr.20190321002
CHEN X S, WANG N, ZHANG Z Y, et al. Progress on the resource and breeding of kernel fruits Ⅰ: progress on the germplasm resources, quality development and genetics and breeding of pear in China. Journal of Plant Genetic Resources, 2019,20(4):791-800. (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.20190321002
31 UKYI K, KIM H B, SONG K J. Karyotype diversity of Korean landrace mandarins by CMA banding pattern and rDNA loci. Scientia Horticulturae, 2018,228:26-32. DOI:10.1016/j.scienta.2017.10.001
doi: 10.1016/j.scienta.2017.10.001
32 KASALKHEH R, JORJANI E, SABOURI H, et al. Chromosome numbers and karyotypes of four species Rubus L. from North of Iran. Journal of Genetic Resource, 2019,5(1):59-64. DOI:10.22080/jgr.2019.16121.1129
doi: 10.22080/jgr.2019.16121.1129
33 张韵洁,李德铢.叶绿体系统发育基因组学的研究进展.植物分类与资源学报,2011,33(4):365-375. DOI:10.3724/SP.J.1143.2011.10202
ZHANG Y J, LI D Z. Advances in phylogenomics based on complete chloroplast genomes. Plant Diversity and Resources, 2011,33(4):365-375. (in Chinese with English abstract)
doi: 10.3724/SP.J.1143.2011.10202
34 WUYUN T N, MA T, UEMATSU C, et al. Phylogenetic network of wild Ussurian pears (Pyrus ussuriensis Maxim.) in China revealed by hypervariable regions of chloroplast DNA. Tree Genetics & Genomes, 2013,9(1):167-177. DOI:10.1007/s11295-012-0544-1
doi: 10
35 焦云,柴春燕,舒巧云.基于SSR分子标记的早熟杨梅优株遗传多样性分析.中国南方果树,2019,48(4):42-45. DOI:10.13938/j.issn.1007-1431.20180589
JIAO Y, CHAI C Y, SHU Q Y. Analysis of genetic diversity of early-maturing elite plants of Chinese bayberry (Myrica rubra) with SSR makers. South China Fruits, 2019,48(4):42-45. (in Chinese)
doi: 10
36 张淑文,梁森苗,郑锡良,等.杨梅基因组SSR引物的开发与应用.园艺学报,2019,46(1):149-156. DOI:10.16420/j.issn.0513-353x.2018-0233
ZHANG S W, LIANG S M, ZHENG X L, et al. Development of genomic SSR and application in Chinese bayberry. Acta Horticulturae Sinica, 2019,46(1):149-156. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2018-0233
37 陈方永,王引,倪海枝,等.浙东南杨梅叶片气孔观察与相似性研究.植物遗传资源学报,2012,13(4):626-631. DOI:10.13430/j.cnki.jpgr.2012.04.032
CHEN F Y, WANG Y, NI H Z, et al. Stomata similarity of some Zhejiang southeast bayberry leaves. Journal of Plant Genetic Resources, 2012,13(4):626-631. (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.2012.04.032
38 林旗华,钟秋珍,张泽煌.18份杨梅种质资源遗传多样性的SRAP分析.热带作物学报,2013,34(9):1667-1671. DOI:10.3969/j.issn.1000-2561.2013.09.008
LIN Q H, ZHONG Q Z, ZHANG Z H. Genetic diversity analysis of 18 Chinese bayberry germplasm resources with SARP. Chinese Journal of Tropical Crops, 2013,34(9):1667-1671. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-2561.2013.09.008
39 ZHANG S M, GAO Z S, XU C J, et al. Genetic diversity of Chinese bayberry(Myrica rubra Sieb. et Zucc.) accessions revealed by amplified fragment length polymorphism. HortScience: A Publication of the American Society for Horticultural Science, 2009,44(2):487-491. DOI:10.1007/s10658-008-9382-2
doi: 10.1007/s10
40 ZHANG S M, XU C J, GAO Z S, et al. Development and characterization of microsatellite markers for Chinese bayberry (Myrica rubra Sieb. & Zucc.). Conservation Genetics, 2009,10(5):1605-1607. DOI:10.1007/s10592-008-9804-x
doi: 10.1007/s10592-008-9804-x
41 XIE R J, ZHOU J, WANG G Y, et al. Cultivar identification and genetic diversity of Chinese bayberry (Myrica rubra) accessions based on fluorescent SSR markers. Plant Molecular Biology Reporter, 2011,29(3):554-562. DOI:10.1007/s11105-010-0261-6
doi: 10.1007/s11105-010-0261-6
42 ISAKSSON A, LANDEGREN U, SYV?NEN A C, et al. Discovery, scoring and utilization of human single nucleotide polymorphisms: a multidisciplinary problem. European Journal of Human Genetics, 2000,8(2):154-156. DOI:10.1038/sj.ejhg.5200424
doi: 10.1038/sj.ejhg.5200424
[1] 梅磊, 朱晔, 肖钦之, 陈进红, 祝水金. 植物络合素合酶及其基因研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 530-538.
[2] 汪燕,梁成刚,陈晴晴,石桃雄,陈其皎,孟子烨,邓娇,黄娟,陈庆富. 荞麦属植物脱落酸不敏感基因序列比较与亲缘关系研究[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 536-542.
[3] 陈方永, 王引, 倪海枝, 张启, 颜帮国. 浙江2个地产白沙枇杷种质资源亲缘关系鉴定[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 739-746.
[4] 邓艳凤,徐红兵,田忠玲,郑经武. 肾形肾状线虫个体间rDNA内转录间隔区的变异[J]. 浙江大学学报(农业与生命科学版), 2015, 41(03): 252-260.
[5] 陈方永1,2*, 倪海枝1, 王引1, 任正初1, 刘继红2, 王一光3. 多效唑对杨梅枯枝病的影响及防治[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 653-660.
[6] 叶晓倩, 赵忠辉, 朱全武, 王营营, 林张翔, 叶楚玉, 樊龙江, 须海荣. 茶树“龙井43”叶绿体基因组测序及其系统进化(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 404-412.
[7] 鹿连明, 杜丹超, 程保平, 胡秀荣, 张利平, 陈国庆. 柑橘黄龙病菌亚洲种外膜蛋白基因的遗传变异分析[J]. 浙江大学学报(农业与生命科学版), 2014, 40(2): 125-132.
[8] 魏俞涌1, 陆军2, 盛奎川3*, 钱湘群3, 沈俊峰2. 设施园艺基质填料机设计与性能研究[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 318-324.
[9] 李海光, 施加春*, 吴建军. 污染场地周边农田土壤重金属含量的空间变异特征及其污染源识别[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 325-334.
[10] 周防震, 张晓元, 孙奋勇, 郭勇. 二氢杨梅素诱导MDA-MB-231细胞凋亡[J]. 浙江大学学报(农业与生命科学版), 2012, 38(3): 293-298.
[11] 董兰学, 吴良欢, 王秋灵, 陈洪利. 不同抗冻模式对高山杨梅养分含量和果实品质的影响[J]. 浙江大学学报(农业与生命科学版), 2011, 37(6): 655-662.
[12] 宋一萍,曾勇庆,陈伟,陈其美,钱源;. 猪BMP15和BMPR-IB基因的遗传变异及其与产仔性能的关系[J]. 浙江大学学报(农业与生命科学版), 2010, 36(5): 561-567.
[13] 陈赛娟, 刘涛, 孙继国, 谷子林, 娄华. 河北省猪繁殖与呼吸综合征病毒主要结构蛋白基因变异分析[J]. 浙江大学学报(农业与生命科学版), 2009, 35(3): 266-271.
[14] 姚荣江  杨劲松  姜龙. 电磁感应仪用于土壤盐分空间变异及其剖面分布特征研究[J]. 浙江大学学报(农业与生命科学版), 2007, 33(2): 207-216.
[15] 路鹏 苏以荣 牛铮等. 红壤丘陵区村级农田土壤养分的空间变异与制图[J]. 浙江大学学报(农业与生命科学版), 2007, 33(1): 89-95.