Please wait a minute...
浙江大学学报(农业与生命科学版)  2020, Vol. 46 Issue (5): 625-636    DOI: 10.3785/j.issn.1008-9209.2019.11.101
农业工程     
圆弧齿轮排肥器圆弧结构参数仿真试验及优化
顿国强1(),高志勇2,郭艳玲1(),刘宇轩1,毛宁1,纪文义3
1.东北林业大学机电工程学院,哈尔滨 150040
2.东北林业大学工程技术学院,哈尔滨 150040
3.东北农业大学工程学院,哈尔滨 150030
Simulation test and optimization for structural parameters of circular arc gear discharging fertilizer apparatus
Guoqiang DUN1(),Zhiyong GAO2,Yanling GUO1(),Yuxuan LIU1,Ning MAO1,Wenyi JI3
1.College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
2.College of Engineering and Technology, Northeast Forestry University, Harbin 150040, China
3.Engineering College, Northeast Agricultural University, Harbin 150030, China
 全文: PDF(5441 KB)   HTML
摘要:

为保证排肥器排肥流量的均匀性,设计了一种圆弧齿轮排肥器。运用离散元仿真技术,以圆弧齿轮排肥器为研究对象,分析了圆弧排肥齿轮的轮槽圆弧半径r1和两圆弧排肥齿轮之间的最小槽长l这2个关键因素对排肥器排肥性能的影响。试验结果表明:圆弧排肥齿轮的轮槽圆弧半径对单位时间排肥量的决定系数影响显著,两圆弧排肥齿轮之间的最小槽长对排肥量稳定性变异系数影响显著,最优的结构参数为r1=8.54 mm,l=5.22 mm,此时,变异系数为0.28,决定系数为0.997 2。选择最优结构进行台架试验,排肥量稳定性变异系数为0.27,单位时间排肥量的决定系数为0.998 0,仿真试验结果和台架试验结果基本吻合。

关键词: 农业机械圆弧齿轮排肥器离散元法结构参数排肥性能    
Abstract:

In order to improve the uniformity of the flow when fertilizer apparatus is working, a kind of fertilizer apparatus owned circular arc gears was designed. Taking the circular arc gear discharging fertilizer apparatus as the research object, this study used discrete element method (DEM) simulation to analyze the influence of two key components including the arc radius of concave-groove of circular arc gear discharging fertilizer (r1) and the minimal length between two mutual meshing arc gears (l). The results indicated that the arc radius of concave-groove of circular arc gear discharging fertilizer had significant effect on the coefficient of determination of discharging fertilizer amount in unit time, and the minimal length between two mutual meshing arc gears had significant effect on the coefficient of variation of the stability of fertilizer sowing amount. The optimum structural parameters were 8.54 mm as the arc radius of concave-groove and 5.22 mm as the minimal length between two mutual meshing arc gears. Upon this circumstance, the coefficient of variation was 0.28, and the coefficient of determination was 0.997 2. The optimum structure was selected to do the bench test. The results indicated that the coefficient of variation of the quality changes of discharging fertilizer was 0.27, and the coefficient of determination of fertilizer discharging amount in unit time was 0.998 0. The results of simulation experiment were basically consistent with the real result.

Key words: agricultural machinery    circular arc gear discharging fertilizer apparatus    discrete element method    structural parameter    fertilizing performance
收稿日期: 2019-11-10 出版日期: 2020-11-19
CLC:  S 224.21  
基金资助: 国家重点研发计划(2018YFD0201001);中央高校基本科研业务费专项(2572020BF10);东北林业大学大学生国家级创新训练计划(202010225211)
通讯作者: 郭艳玲     E-mail: dunguoqiang1986@163.com;guo.yl@hotmail.com
作者简介: 顿国强(https://orcid.org/0000-0003-0523-4642),E-mail:dunguoqiang1986@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
顿国强
高志勇
郭艳玲
刘宇轩
毛宁
纪文义

引用本文:

顿国强,高志勇,郭艳玲,刘宇轩,毛宁,纪文义. 圆弧齿轮排肥器圆弧结构参数仿真试验及优化[J]. 浙江大学学报(农业与生命科学版), 2020, 46(5): 625-636.

Guoqiang DUN,Zhiyong GAO,Yanling GUO,Yuxuan LIU,Ning MAO,Wenyi JI. Simulation test and optimization for structural parameters of circular arc gear discharging fertilizer apparatus. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 625-636.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2019.11.101        http://www.zjujournals.com/agr/CN/Y2020/V46/I5/625

图1  软球模型对颗粒间(或颗粒-接触壁间)接触力的简化处理
图2  2种排肥器结构对比A. 外槽轮式排肥器结构示意图;B. 圆弧齿轮排肥器结构示意图。1:外槽轮式排肥器外壳;2:排肥外槽轮;3:排肥舌;4:圆弧齿轮排肥器外壳;5:驱动六方轴孔;6:主动齿轮轴;7:从动齿轮轴;8:圆弧排肥齿轮。
图3  2种排肥器排肥效果对比A. 外槽轮式排肥器排肥效果示意图;B. 圆弧齿轮排肥器排肥效果示意图。
图4  排肥器设计参数
图5  参数计算图解
图6  r1和l对圆弧排肥齿轮形状的影响

颗粒参数

Particle parameter

数值

Value

平均质量 Average mass/g0.011
平均体积 Average volume/mm38.580
平均半径 Average radius/mm1.270
半径标准差 Standard deviation of radius/mm0.290
表1  EDEM中颗粒参数设置
项目 Item颗粒属性 Particle property数值 Value

尿素颗粒

Urea particle

泊松比 Poisson’s ratio0.25
剪切模量 Shear modulus/MPa28
密度 Density/(kg/m3)1 283

排肥器

Fertilizer apparatus

泊松比 Poisson’s ratio0.43
剪切模量 Shear modulus/MPa1 300
密度 Density/(kg/m3)1 240

颗粒-颗粒

Particle-particle

恢复系数Coefficient of restitution0.11
静摩擦系数 Coefficient of static friction0.30
滚动摩擦系数 Coefficient of rolling friction0.10

颗粒-排肥器

Particle-fertilizer apparatus

恢复系数 Coefficient of restitution0.41
静摩擦系数 Coefficient of static friction0.32
滚动摩擦系数 Coefficient of rolling friction0.18
表2  EDEM中变量参数设置
图7  仿真几何模型1:颗粒工厂;2:尿素颗粒;3:挡肥板;4:圆弧排肥齿轮;5:排肥器壳体;6:肥料收集器;7:监测网格(b);8:监测网格(a)。EDEM:工程离散元法。
图8  单次试验监测网格(a)内肥料颗粒质量变化
图9  单次试验监测网格(b)内肥料堆积质量变化

水平

Level

因素 Factor

圆弧排肥齿轮的

轮槽圆弧半径

Arc radius of concave-groove

of circular arc gear

discharging fertilizer (r1)/mm

两圆弧排肥齿轮

之间的最小槽长

Minimal length of two

mutual meshing arc

gears (l)/mm

+γ117
+1107
095
-184
γ73
表3  试验因素与水平

编号

Identifier

自变量

Independent variable

试验指标

Test indicator

x1x2σR2
1-1-10.3990.995 1
21-10.4700.983 5
3-110.4820.993 8
4110.2950.985 3
5-1.41400.3560.993 8
61.41400.3640.978 2
70-1.4140.6700.998 0
801.4140.3770.990 8
9000.3240.995 4
10000.2740.996 9
11000.2960.993 9
12000.2720.998 7
13000.3000.998 5
14000.2610.996 9
15000.2970.991 4
16000.2640.998 6
表4  二次正交旋转试验方案及结果

来源

Source

平方和

Sum of squares

自由度

Degree of freedom

均方和

Sum of mean squares

F

F value

P

P value

模型 Model0.17070.02438.50<0.000 1
x13.191×10-513.191×10-50.050.828 1
x20.04310.04367.54<0.000 1
x1x20.01710.01726.120.000 9
x126.916×10-316.916×10-310.910.010 8
x220.09910.099156.22<0.000 1
x12x20.01310.01320.340.002 0
x1x222.021×10-312.021×10-33.190.112 0
失拟 Lack of fit5.070×10-315.070×10-33.870.089 9
误差 Pure error1.805×10-374.665×10-4
总和 Sum0.18015
表5  各因子对监测网格(a)内排肥量稳定性变异系数影响的方差分析

来源

Source

平方和

Sum of squares

自由度

Degree of freedom

均方和

Sum of mean squares

F

F value

P

P value

模型 Model4.758×10-459.516×10-515.150.000 2
x12.222×10-412.222×10-435.000.000 1
x21.115×10-511.115×10-536.000.205 0
x1x22.402×10-612.402×10-61.840.550 2
x122.292×10-412.292×10-40.380.000 1
x221.041×10-511.041×10-536.480.227 1
失拟 Lack of fit1.564×10-535.215×10-61.660.544 6
误差 Pure error4.719×10-576.741×10-60.77
总和 Sum5.386×10-415
表6  各因子对监测网格(b)内单位时间排肥量的决定系数影响的方差分析
图10  最小槽长l与轮槽圆弧半径r1对变异系数的响应曲面图
图11  最小槽长l与轮槽圆弧半径r1对决定系数的响应曲面图
图12  3D打印模型及试验装置1:圆弧排肥齿轮;2:外壳;3:直齿渐开线圆柱齿轮;4:排肥器肥料箱;5:变频器;6:排肥器驱动电机;7:尿素颗粒;8:传输带;9:传送带驱动电机;10:试验台架。
1 陆文聪,刘聪.化肥污染对粮食作物生产的环境惩罚效应. 中国环境科学,2017,37(5):1988-1994.
LU W C, LIU C. The “environmental punishment” effect of fertilize pollution in grain crop production. China Environ-mental Science, 2017,37(5):1988-1994. (in Chinese with English abstract)
2 梁方,杨淦光,许丰,等.外槽轮式播种机播量控制系统设计与试验. 农机化研究,2019,41(10):153-157. DOI:10.3969/j.issn.1003-188X.2019.10.028
LIANG F, YANG G G, XU F, et al. The seeding rate control system design and experiment of the external groove wheel seeder. Journal of Agricultural Mechanization Research, 2019,41(10):153-157. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-188X.2019.10.028
3 顿国强,于春玲,杨永振,等.外槽轮排肥器排肥离散元仿真及排肥舌参数优化. 湖南农业大学学报(自然科学版),2018,44(6):661-665. DOI:10.13331/j.cnki.jhau.2018.06.015
DUN G Q, YU C L, YANG Y Z, et al. Discharging characteristic test of outer-groove wheel fertilizer and parameter optimization of fertilizer tongue by discrete element simulation. Journal of Hunan Agricultural University (Natural Sciences), 2018,44(6):661-665. (in Chinese with English abstract)
doi: 10.13331/j.cnki.jhau.2018.06.015
4 杨洲,朱卿创,孙健峰,等.基于EDEM和3D打印成型的外槽轮排肥器排肥性能研究. 农机化研究,2018,40(5):175-180. DOI:10.3969/j.issn.1003-188X.2018.05.032
YANG Z, ZHU Q C, SUN J F, et al. Study on the performance of fluted roller fertilizer distributor based on EDEM and 3D printing. Journal of Agricultural Mechanization Research, 2018,40(5):175-180. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-188X.2018.05.032
5 张涛,刘飞,刘月琴,等.离散元模拟外槽轮排肥器排量分析. 农机化研究,2015,37(9):198-201. DOI:10.3969/j.issn.1003-188X.2015.09.046
ZHANG T, LIU F, LIU Y Q, et al. Discrete element simulation of outer groove wheel type fertilizer discharging device capacity analysis. Journal of Agricultural Mechanization Research, 2015,37(9):198-201. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-188X.2015.09.046
6 汪博涛,白璐,丁尚鹏,等.外槽轮排肥器关键工作参数对排肥量影响的仿真与试验研究. 中国农机化学报,2017,38(10):1-6, 23. DOI:10.13733/j.jcam.issn.2095-5553.2017.10.001
WANG B T, BAI L, DING S P, et al. Simulation and experimental study on impact of fluted-roller fertilizer key parameters on fertilizer amount. Journal of Chinese Agricultural Mechanization, 2017,38(10):1-6, 23. (in Chinese with English abstract)
doi: 10.13733/j.jcam.issn.2095-5553.2017.10.001
7 吕昊.外槽轮排肥器优化设计新方法研究.长春:吉林大学,2014.
Lü H. A new kind of method for the optimized design of outer groove-wheel fertilizer apparatuses. Changchun: Jinlin University, 2014. (in Chinese with English abstract)
8 胡建平,郭坤,周春健,等.磁吸滚筒式排种器种箱振动供种仿真与试验. 农业机械学报,2014,45(8):61-65. DOI:10.6041/j.issn.1000-1298.2014.08.010
HU J P, GUO K, ZHOU C J, et al. Simulation and experiment of supplying seeds in box of magnetic precision cylinder-seeder. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(8):61-65. (in Chinese with English abstract)
doi: 10.6041/j.issn.1000-1298.2014.08.010
9 陈进,周韩,赵湛,等.基于EDEM的振动种盘中水稻种群运动规律研究. 农业机械学报,2011,42(10):79-83, 100.
CHEN J, ZHOU H, ZHAO Z, et al. Analysis of rice seeds motion on vibrating plate using EDEM. Transactions of the Chinese Society for Agricultural Machinery, 2011,42(10):79-83, 100. (in Chinese with English abstract)
10 王国强,郝万军,王继新.离散单元法及其在EDEM上的实践.西安:西北工业大学出版社,2010.
WANG G Q, HAO W J, WANG J X. Discrete Element Method and Its Application in EDEM. Xi’an: Northwestern Polytechnical University Press, 2010. (in Chinese)
11 BENN D I, ?STR?M J, ZWINGER T, et al. Melt-under-cutting and buoyancy-driven calving from tidewater glaciers: new insights from discrete element and continuum model simulations. Journal of Glaciology, 2017,63(240):691-702. DOI:10.1017/jog.2017.41
doi: 10.1017/jog.2017.41
12 SHI Y W, CHEN M, WANG X C, et al. Numerical simulation of spreading performance and distribution pattern of centrifugal variable-rate fertilizer applicator based on DEM software. Computers and Electronics in Agriculture, 2018,144:249-259. DOI:10.1016/j.compag.2017.12.015
doi: 10.1016/j.compag.2017.12.015
13 方会敏,姬长英,张庆怡,等.基于离散元法的旋耕刀受力分析. 农业工程学报,2016,32(21):54-59. DOI:10.11975/j.issn.1002-6819.2016.21.00
FANG H M, JI C Y, ZHANG Q Y, et al. Force analysis of rotary blade based on discrete element method. Transactions of the CSAE, 2016,32(21):54-59. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2016.21.00
14 贺一鸣,吴明亮,向伟,等.离散元法在农业工程领域的应用进展. 中国农学通报,2017,33(20):133-137.
HE Y M, WU M L, XIANG W, et al. Application progress of discrete element method in agricultural engineering. Chinese Agricultural Science Bulletin, 2017,33(20):133-137. (in Chinese with English abstract)
15 邱轶兵.试验设计与数据处理.合肥:中国科学技术大学出版社,2008.
QIU Y B. Experiment Design and Data Processing. Hefei: Press of University of Science and Technology of China, 2008. (in Chinese)
16 廖庆喜,张朋玲,廖宜涛,等.基于EDEM的离心式排种器排种性能数值模拟. 农业机械学报,2014,45(2):109-114. DOI:10.6041/j.issn.1000-1298.2014.02.01
LIAO Q X, ZHANG P L, LIAO Y T, et al. Numerical simulation on seeding performance of centrifugal rape-seed metering device based on EDEM. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(2):109-114. (in Chinese with English abstract)
doi: 10.6041/j.issn.1000-1298.2014.02.01
17 GUNARAJ V, MURUGAN N. Application of response surface methodologies for predicting weld base quality in submerged arc welding of pipes. Journal of Materials Processing Technology, 1999,88(1/2/3):266-275.
18 周桂霞,汪春,张伟,等.基于二次正交旋转回归试验的深松铲关键参数建模. 农业机械学报,2006,37(10):86-89.
ZHOU G X, WANG C, ZHANG W, et al. Mathematic model of deep-shovel with critical structure parameter based on two times orthogonal rotational regressive tests. Transactions of the Chinese Society for Agricultural Machinery, 2006,37(10):86-89. (in Chinese with English abstract)
[1] 戴旭东,吴锋,姚栋伟,郑高安,吕成磊. 小型农业机械柴油机排放测试循环研究[J]. 浙江大学学报(农业与生命科学版), 2019, 45(4): 512-518.
[2] 张京平*, 朱建锡, 孙腾. 便携式苗木移植机设计及工作参数优化[J]. 浙江大学学报(农业与生命科学版), 2014, 40(2): 231-236.
[3] 骆健民  郑文钟  何勇 . 浙江省农业机械化发展水平评价 [J]. 浙江大学学报(农业与生命科学版), 2007, 33(2): 217-221.
[4] 郑文钟  何勇  张玉林. 基于GIS的农业机械化决策支持系统的研究[J]. 浙江大学学报(农业与生命科学版), 2005, 31(3): 329-332.
[5] 郑文钟  何勇. 基于GIS的浙江省农业机械化发展水平的地区比较[J]. 浙江大学学报(农业与生命科学版), 2004, 30(6): 668-672.
[6] 郑文钟  应霞芳  何勇. 浙江省农业机械化发展的系统分析[J]. 浙江大学学报(农业与生命科学版), 2003, 29(2): 147-151.
[7] 鲍一丹  何勇. 农业机械多媒体决策支持系统的研究[J]. 浙江大学学报(农业与生命科学版), 2001, 27(2): 187-190.
[8] 郑文钟  何勇. 浙江省农业机械化水平评价方法及应用研究[J]. 浙江大学学报(农业与生命科学版), 2001, 27(2): 191-194.
[9] 潘根宝. 杭州市农业机械化的实践和思考[J]. 浙江大学学报(农业与生命科学版), 2000, 26(2): 209-214.