Please wait a minute...
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology)  2011, Vol. 12 Issue (11): 875-883    DOI: 10.1631/jzus.B1100023
    
Effect of epidermal growth factor on follicle-stimulating hormone-induced proliferation of granulosa cells from chicken prehierarchical follicles
Jin-xing Lin, Yu-dong Jia, Cai-qiao Zhang
Key Laboratory of Animal Epidemic Etiology & Immunological Prevention of the Ministry of Agriculture, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The development of ovarian follicular cells is controlled by multiple circulating and local hormones and factors, including follicle-stimulating hormone (FSH) and epidermal growth factor (EGF). In this study, the stage-specific effect of EGF on FSH-induced proliferation of granulosa cells was evaluated in the ovarian follicles of egg-laying chickens. Results showed that EGF and its receptor (EGFR) mRNAs displayed a high expression in granulosa cells from the prehierarchical follicles, including the large white follicle (LWF) and small yellow follicle (SYF), and thereafter the expression decreased markedly to the stage of the largest preovulatory follicle. SYF represents a turning point of EGF/EGFR mRNA expression during follicle selection. Subsequently the granulosa cells from SYF were cultured to reveal the mediation of EGF in FSH action. Cell proliferation was remarkably increased by treatment with either EGF or FSH (0.1–100 ng/ml). This result was confirmed by elevated proliferating cell nuclear antigen (PCNA) expression and decreased cell apoptosis. Furthermore, EGF-induced cell proliferation was accompanied by increased mRNA expressions of EGFR, FSH receptor, and the cell cycle-regulating genes (cyclins D1 and E1, cyclin-dependent kinases 2 and 6) as well as decreased expression of luteinizing hormone receptor mRNA. However, the EGF or FSH-elicited effect was reversed by simultaneous treatment with an EGFR inhibitor AG1478. In conclusion, EGF and EGFR expressions manifested stage-specific changes during follicular development and EGF mediated FSH-induced cell proliferation and retarded cell differentiation in the prehierarchical follicles. These expressions thus stimulated follicular growth before selection in the egg-laying chicken.

Key wordsEpidermal growth factor      Follicle-stimulating hormone      Granulosa cell      Proliferation      Chicken     
Received: 18 January 2011      Published: 04 November 2011
CLC:  Q253  
Cite this article:

Jin-xing Lin, Yu-dong Jia, Cai-qiao Zhang. Effect of epidermal growth factor on follicle-stimulating hormone-induced proliferation of granulosa cells from chicken prehierarchical follicles. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2011, 12(11): 875-883.

URL:

http://www.zjujournals.com/xueshu/zjus-b/10.1631/jzus.B1100023     OR     http://www.zjujournals.com/xueshu/zjus-b/Y2011/V12/I11/875

[1] Xun Tan, Fan-guo Juan, Ali Q. Shah. Involvement of endothelial progenitor cells in the formation of plexiform lesions in broiler chickens: possible role of local immune/inflammatory response[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2017, 18(1): 59-69.
[2] Xiao-yan Cui, Ying-ying Li, Ran-ran Liu, Gui-ping Zhao, Mai-qing Zheng, Qing-he Li, Jie Wen. Follicle-stimulating hormone increases the intramuscular fat content and expression of lipid biosynthesis genes in chicken breast muscle[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2016, 17(4): 303-310.
[3] Chun-qi Gao, Yin-ling Zhao, Hai-chang Li, Wei-guo Sui, Hui-chao Yan, Xiu-qi Wang. Heat stress inhibits proliferation, promotes growth, and induces apoptosis in cultured Lantang swine skeletal muscle satellite cells[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2015, 16(6): 549-559.
[4] Chao Li, Da-ren Liu, Long-yun Ye, Ling-na Huang, Sanjay Jaiswal, Xiao-wen Li, Hou-hong Wang, Li Chen. HER-2 overexpression and survival in colorectal cancer: a meta-analysis[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(6): 582-589.
[5] He-qing Zhan, Ling Xia, Guo-fa Shou, Yun-liang Zang, Feng Liu, Stuart Crozier. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(3): 225-242.
[6] Nadeem Akhtar Abbasi, Tariq Pervaiz, Ishfaq Ahmed Hafiz, Mehwish Yaseen, Azhar Hussain. Assessing the response of indigenous loquat cultivar Mardan to phytohormones for in vitro shoot proliferation and rooting[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2013, 14(9): 774-784.
[7] Ping Yang, Jameel Ahmed Gandahi, Qian Zhang, Lin-li Zhang, Xun-guang Bian, Li Wu, Yi Liu, Qiu-sheng Chen. Quantitative changes of nitrergic neurons during postnatal development of chicken myenteric plexus[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2013, 14(10): 886-895.
[8] Rong-fa Guan, Fei Lyu, Xiao-qiang Chen, Jie-qing Ma, Han Jiang, Chao-geng Xiao. Meat quality traits of four Chinese indigenous chicken breeds and one commercial broiler stock[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2013, 14(10): 896-902.
[9] Rui Bai, Zhong Shi, Jia-wei Zhang, Dan Li, Yong-liang Zhu, Shu Zheng. ST13, a proliferation regulator, inhibits growth and migration of colorectal cancer cell lines[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2012, 13(11): 884-893.
[10] Yu-li Huang, Ruo-feng Qiu, Wei-yi Mai, Jian Kuang, Xiao-yan Cai, Yu-gang Dong, Yun-zhao Hu, Yuan-bin Song, An-ping Cai, Zhi-gao Jiang. Effects of insulin-like growth factor-1 on the properties of mesenchymal stem cells in vitro[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2012, 13(1): 20-28.
[11] Wei He, Mei-fang Zhang, Jun Ye, Ting-ting Jiang, Xu Fang, Ying Song. Cordycepin induces apoptosis by enhancing JNK and p38 kinase activity and increasing the protein expression of Bcl-2 pro-apoptotic molecules[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2010, 11(9): 654-660.
[12] Wei Wang, Li Wang, Xin-xiu Li, Xia Chen, Hai-yan Zhang, Yu He, Jing-jing Wang, Yong-yan Zhao, Bao-le Zhang, Yin-xue Xu. Effect of interrupted endogenous BMP/Smad signaling on growth and steroidogenesis of porcine granulosa cells[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2010, 11(9): 719-727.
[13] Hong-yun Liu, Wei-dong Zeng, Ai-ling Cao, Cai-qiao Zhang. Follicle-stimulating hormone promotes proliferation of cultured chicken ovarian germ cells through protein kinases A and C activation[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2010, 11(12): 952-957.
[14] Jian-zhen SHAN, Yan-yan XUAN, Shu ZHENG, Qi DONG, Su-zhan ZHANG. Ursolic acid inhibits proliferation and induces apoptosis of HT-29 colon cancer cells by inhibiting the EGFR/MAPK pathway[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2009, 10(9): 668-674.
[15] Shao-xiang WENG, Mei-hua SUI, Shan CHEN, Jian-an WANG, Geng XU, Ji MA, Jiang SHAN, Lu FANG. Parthenolide inhibits proliferation of vascular smooth muscle cells through induction of G0/G1 phase cell cycle arrest[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2009, 10(7): 528-535.