Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2011, Vol. 12 Issue (12): 921-925    DOI: 10.1631/jzus.A11GT013
Control Systems     
Sensor network architecture for intelligent high-speed train on-board monitoring
Xiao-fan Wu, Chun Chen, Jia-jun Bu, Gang Chen
College of Computer Science, Zhejiang University, Hangzhou 310027, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The China’s high-speed railway is experiencing a rapid growth. Its operating mileage and the number of operating trains will exceed 45 000 km and 1500 trains by 2015, respectively. During the long range and constant high-speed operation, the high-speed trains have extremely complex and varied work conditions. Such a situation creates a huge demand for high-speed train on-board monitoring. In this paper, architecture for high-speed train on-board monitoring sensor network is proposed. This architecture is designed to achieve the goals of reliable sensing, scalable data transporting, and easy management. The three design goals are realized separately. The reliable sensing is achieved by deploying redundant sensor nodes in the same components. Then a hierarchal transporting scheme is involved to meet the second goal. Finally, an electronic-tag based addressing method is introduced to solve the management problem.

Key wordsHigh-speed train      On-board monitoring      Sensor network      Network architecture     
Received: 23 September 2011      Published: 01 December 2011
CLC:  TP393  
Cite this article:

Xiao-fan Wu, Chun Chen, Jia-jun Bu, Gang Chen. Sensor network architecture for intelligent high-speed train on-board monitoring. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 921-925.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A11GT013     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2011/V12/I12/921

[1] Xin-biao Xiao, Liang Ling, Jia-yang Xiong, Li Zhou, Xue-song Jin. Study on the safety of operating high-speed railway vehicles subjected to crosswinds[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(9): 694-710.
[2] Jie Zhang, Guang-xu Han, Xin-biao Xiao, Rui-qian Wang, Yue Zhao, Xue-song Jin. Influence of wheel polygonal wear on interior noise of high-speed trains[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 1002-1018.
[3] Bin He, Xin-biao Xiao, Qiang Zhou, Zhi-hui Li, Xue-song Jin. Investigation into external noise of a high-speed train at different speeds[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 1019-1033.
[4] Liang Ling, Xin-biao Xiao, Jia-yang Xiong, Li Zhou, Ze-feng Wen, Xue-song Jin. A 3D model for coupling dynamics analysis of high-speed train/track system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 964-983.
[5] Xue-song Jin. Key problems faced in high-speed train operation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 936-945.
[6] Meng-ge Yu, Ji-ye Zhang, Wei-hua Zhang. Multi-objective optimization design method of the high-speed train head[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 631-641.
[7] Tian Li, Ji-ye Zhang, Wei-hua Zhang. A numerical approach to the interaction between airflow and a high-speed train subjected to crosswind[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(7): 482-493.
[8] Li Zhou, Zhi-yun Shen. Dynamic analysis of a high-speed train operating on a curved track with failed fasteners[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(6): 447-458.
[9] Ji-en Ma, Bin Zhang, Xiao-yan Huang, You-tong Fang, Wen-ping Cao. Design and analysis of the hybrid excitation rail eddy brake system of high-speed trains[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 936-944.
[10] Qin-fen Lu, Bin Wang, Xiao-yan Huang, Ji-en Ma, You-tong Fang, Jin Yu, Wen-ping Cao. Simulation software for CRH2 and CRH3 traction driver systems based on SIMULINK and VC[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 945-949.
[11] Xin-hua Li, Jian Deng, Da-wei Chen, Fang-fang Xie, Yao Zheng. Unsteady simulation for a high-speed train entering a tunnel[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 957-963.
[12] Xue-ming Shao, Jun Wan, Da-wei Chen, Hong-bing Xiong. Aerodynamic modeling and stability analysis of a high-speed train under strong rain and crosswind conditions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 964-970.
[13] Hong-bing Xiong, Wen-guang Yu, Da-wei Chen, Xue-ming Shao. Numerical study on the aerodynamic performance and safe running of high-speed trains in sandstorms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 971-978.
[14] Meng-ling Wu, Yang-yong Zhu, Chun Tian, Wei-wei Fei. Influence of aerodynamic braking on the pressure wave of a crossing high-speed train[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 979-984.
[15] Pablo García Ansola, Andrés García, Javier de las Morenas, Javier García Escribano, Francisco Javier Otamendi. ZigID: Improving visibility in industrial environments by combining WSN and RFID[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(11): 849-859.