Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2013, Vol. 14 Issue (7): 482-493    DOI: 10.1631/jzus.A1300035
Mechanics and Mechanical Engineering     
A numerical approach to the interaction between airflow and a high-speed train subjected to crosswind
Tian Li, Ji-ye Zhang, Wei-hua Zhang
State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Aerodynamic forces and dynamic performances of railway vehicles are coupled and affected by each other. On the one hand, aerodynamic forces change the displacements of a train. On the other hand, displacements affect aerodynamic forces. Based on vehicle-track coupling dynamics and aerodynamics, a numerical approach to the interaction between airflow and a high-speed train is presented in this paper. Aerodynamic forces and dynamic performances of a high-speed train subjected to crosswind were numerically simulated. Results showed that the interaction between airflow and a high-speed train has a significant influence on displacements and aerodynamic forces of the head coach. Therefore, it is necessary to consider the interaction between airflow and a high-speed train subjected to crosswind.

Key wordsHigh-speed train      Crosswind      Aerodynamics      Co-simulation      Interaction     
Received: 22 January 2013      Published: 01 July 2013
CLC:  U271.91  
  O355  
Cite this article:

Tian Li, Ji-ye Zhang, Wei-hua Zhang. A numerical approach to the interaction between airflow and a high-speed train subjected to crosswind. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(7): 482-493.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1300035     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2013/V14/I7/482

[1] Kai Zhang, Hong-bing Xiong, Xue-ming Shao. Dynamic modeling of micro- and nano-sized particles impinging on the substrate during suspension plasma spraying[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(9): 733-744.
[2] Zhen-yu Wang, Yang Zhao, Guo-wei Ma, Zhi-guo He. A numerical study on the high-velocity impact behavior of pressure pipes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(6): 443-453.
[3] Xiao-ping Ouyang, Xu Fang, Hua-yong Yang. An investigation into the swash plate vibration and pressure pulsation of piston pumps based on full fluid-structure interactions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(3): 202-214.
[4] Na Zhang, Hai-jun Xuan, Xiao-jun Guo, Chao-peng Guan, Wei-rong Hong. Investigation of high-speed rubbing behavior of labyrinth-honeycomb seal for turbine engine application[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 947-960.
[5] Xiang-lei Zhang, Bin Yao, Wei Feng, Zhi-huang Shen, Meng-meng Wang. Modeling of a virtual grinding wheel based on random distribution of multi-grains and simulation of machine-process interaction[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(11): 874-884.
[6] Xin-biao Xiao, Liang Ling, Jia-yang Xiong, Li Zhou, Xue-song Jin. Study on the safety of operating high-speed railway vehicles subjected to crosswinds[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(9): 694-710.
[7] Hong-bo Peng, Di Zhang, Hao Li, Chi Wang, Bo Pan. Organic contaminants and carbon nanoparticles: sorption mechanisms and impact parameters[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(8): 606-617.
[8] Xue-song Jin. Key problems faced in high-speed train operation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 936-945.
[9] Xin Zhao, Ze-feng Wen, Heng-yu Wang, Xue-song Jin, Min-hao Zhu. Modeling of high-speed wheel-rail rolling contact on a corrugated rail and corrugation development[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 946-963.
[10] Jie Zhang, Guang-xu Han, Xin-biao Xiao, Rui-qian Wang, Yue Zhao, Xue-song Jin. Influence of wheel polygonal wear on interior noise of high-speed trains[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 1002-1018.
[11] Bin He, Xin-biao Xiao, Qiang Zhou, Zhi-hui Li, Xue-song Jin. Investigation into external noise of a high-speed train at different speeds[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 1019-1033.
[12] Liang Ling, Xin-biao Xiao, Jia-yang Xiong, Li Zhou, Ze-feng Wen, Xue-song Jin. A 3D model for coupling dynamics analysis of high-speed train/track system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 964-983.
[13] Meng-ge Yu, Ji-ye Zhang, Wei-hua Zhang. Multi-objective optimization design method of the high-speed train head[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 631-641.
[14] Syed-shah Khalid, Liang Zhang, Xue-wei Zhang, Ke Sun. Three-dimensional numerical simulation of a vertical axis tidal turbine using the two-way fluid structure interaction approach[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(8): 574-582.
[15] Li Zhou, Zhi-yun Shen. Dynamic analysis of a high-speed train operating on a curved track with failed fasteners[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(6): 447-458.