Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2014, Vol. 15 Issue (12): 1002-1018    DOI: 10.1631/jzus.A1400233
Articles     
Influence of wheel polygonal wear on interior noise of high-speed trains
Jie Zhang, Guang-xu Han, Xin-biao Xiao, Rui-qian Wang, Yue Zhao, Xue-song Jin
State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China; School of Urban Rail Transit, Changzhou University, Changzhou 213164, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  This work presents a detailed investigation conducted into the relationships between wheel polygonal wear and wheel/rail noise, and the interior noise of high-speed trains through extensive experiments and numerical simulations. The field experiments include roundness measurement and characteristics analysis of the high-speed wheels in service, and analysis on the effect of re-profiling on the interior noise of the high-speed coach. The experimental analysis shows that wheel polygonal wear has a great impact on wheel/rail noise and interior noise. In the numerical simulation, the model of high-speed wheel/rail noise caused by the uneven wheel wear is developed by means of the high-speed wheel-track noise software (HWTNS). The calculation model of the interior noise of a high-speed coach is developed based on the hybrid of the finite element method and the statistic energy analysis (FE-SEA). The numerical simulation analyses the effect of the polygonal wear characteristics, such as roughness level, polygon order (or wavelength), and polygon phase, on wheel/rail noise and interior noise of a high-speed coach. The numerical results show that different polygon order with nearly the same roughness levels can cause different wheel/rail noises and interior noises. The polygon with a higher roughness level can cause a larger wheel/rail noise and a larger interior noise. The combination of different polygon phases can make a different wheel circle diameter difference due to wear, but its effect on the interior noise level is not great. This study can provide a basis for improving the criteria for high-speed wheel re-profiling of China’s high-speed trains.

Key wordsHigh-speed train      Wheel polygonal wear      Wheel re-profiling      Interior noise      Wheel/rail noise      Hybrid finite element method and the statistic energy analysis (FE-SEA)     
Received: 27 July 2014      Published: 04 December 2014
CLC:  U270.1+6  
Cite this article:

Jie Zhang, Guang-xu Han, Xin-biao Xiao, Rui-qian Wang, Yue Zhao, Xue-song Jin. Influence of wheel polygonal wear on interior noise of high-speed trains. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 1002-1018.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1400233     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2014/V15/I12/1002

[1] Xin-biao Xiao, Liang Ling, Jia-yang Xiong, Li Zhou, Xue-song Jin. Study on the safety of operating high-speed railway vehicles subjected to crosswinds[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(9): 694-710.
[2] Bin He, Xin-biao Xiao, Qiang Zhou, Zhi-hui Li, Xue-song Jin. Investigation into external noise of a high-speed train at different speeds[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 1019-1033.
[3] Liang Ling, Xin-biao Xiao, Jia-yang Xiong, Li Zhou, Ze-feng Wen, Xue-song Jin. A 3D model for coupling dynamics analysis of high-speed train/track system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 964-983.
[4] Xue-song Jin. Key problems faced in high-speed train operation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 936-945.
[5] Meng-ge Yu, Ji-ye Zhang, Wei-hua Zhang. Multi-objective optimization design method of the high-speed train head[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 631-641.
[6] Tian Li, Ji-ye Zhang, Wei-hua Zhang. A numerical approach to the interaction between airflow and a high-speed train subjected to crosswind[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(7): 482-493.
[7] Li Zhou, Zhi-yun Shen. Dynamic analysis of a high-speed train operating on a curved track with failed fasteners[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(6): 447-458.
[8] Xiao-fan Wu, Chun Chen, Jia-jun Bu, Gang Chen. Sensor network architecture for intelligent high-speed train on-board monitoring[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 921-925.
[9] Ji-en Ma, Bin Zhang, Xiao-yan Huang, You-tong Fang, Wen-ping Cao. Design and analysis of the hybrid excitation rail eddy brake system of high-speed trains[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 936-944.
[10] Qin-fen Lu, Bin Wang, Xiao-yan Huang, Ji-en Ma, You-tong Fang, Jin Yu, Wen-ping Cao. Simulation software for CRH2 and CRH3 traction driver systems based on SIMULINK and VC[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 945-949.
[11] Xin-hua Li, Jian Deng, Da-wei Chen, Fang-fang Xie, Yao Zheng. Unsteady simulation for a high-speed train entering a tunnel[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 957-963.
[12] Xue-ming Shao, Jun Wan, Da-wei Chen, Hong-bing Xiong. Aerodynamic modeling and stability analysis of a high-speed train under strong rain and crosswind conditions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 964-970.
[13] Hong-bing Xiong, Wen-guang Yu, Da-wei Chen, Xue-ming Shao. Numerical study on the aerodynamic performance and safe running of high-speed trains in sandstorms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 971-978.
[14] Meng-ling Wu, Yang-yong Zhu, Chun Tian, Wei-wei Fei. Influence of aerodynamic braking on the pressure wave of a crossing high-speed train[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 979-984.