Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2011, Vol. 12 Issue (12): 936-944    DOI: 10.1631/jzus.A11GT002
Electrical Engineering     
Design and analysis of the hybrid excitation rail eddy brake system of high-speed trains
Ji-en Ma, Bin Zhang, Xiao-yan Huang, You-tong Fang, Wen-ping Cao
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China, The Key State Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China, Newcastle University, Newcastle upon Type, NE1 7RU, UK
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Compared to the current eddy braking patterns using a single magnetic source, hybrid excitation rail eddy brakes have many advantages, such as controllability, energy saving, and various operating models. Considering the large braking power consumption of the high-speed train, a hybrid excitation rail eddy brake system, which is based on the principle of electromagnetic field, is proposed to fulfill the needs of safety and reliability. Then the working processes of the mechanical lifting system and electromagnetic system are demonstrated. With the electromagnetic system analyzed using the finite element method, the factors such as speed, air gap, and exciting current have influences on the braking force and attractive force. At last, the structure optimization of the brake system is discussed.

Key wordsHigh-speed train      Hybrid excitation      Eddy brake      Finite element method     
Received: 23 September 2011      Published: 01 December 2011
CLC:  U266.2  
Cite this article:

Ji-en Ma, Bin Zhang, Xiao-yan Huang, You-tong Fang, Wen-ping Cao. Design and analysis of the hybrid excitation rail eddy brake system of high-speed trains. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 936-944.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A11GT002     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2011/V12/I12/936

[1] Xin-biao Xiao, Liang Ling, Jia-yang Xiong, Li Zhou, Xue-song Jin. Study on the safety of operating high-speed railway vehicles subjected to crosswinds[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(9): 694-710.
[2] Qi-yin Zhu, Ze-xiang Wu, Yan-ling Li, Chang-jie Xu, Jian-hua Wang, Xiao-he Xia. A modified creep index and its application to viscoplastic modelling of soft clays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(4): 272-281.
[3] Xiang-kai Meng, Shao-xian Bai, Xu-dong Peng. An efficient adaptive finite element method algorithm with mass conservation for analysis of liquid face seals[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(3): 172-184.
[4] Jie Zhang, Guang-xu Han, Xin-biao Xiao, Rui-qian Wang, Yue Zhao, Xue-song Jin. Influence of wheel polygonal wear on interior noise of high-speed trains[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 1002-1018.
[5] Bin He, Xin-biao Xiao, Qiang Zhou, Zhi-hui Li, Xue-song Jin. Investigation into external noise of a high-speed train at different speeds[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 1019-1033.
[6] Liang Ling, Xin-biao Xiao, Jia-yang Xiong, Li Zhou, Ze-feng Wen, Xue-song Jin. A 3D model for coupling dynamics analysis of high-speed train/track system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 964-983.
[7] Xue-song Jin. Key problems faced in high-speed train operation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 936-945.
[8] Xin Zhao, Ze-feng Wen, Heng-yu Wang, Xue-song Jin, Min-hao Zhu. Modeling of high-speed wheel-rail rolling contact on a corrugated rail and corrugation development[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 946-963.
[9] Wen-jie Zhou, Xue-song Wei, Xian-zhu Wei, Le-qin Wang. Numerical analysis of a nonlinear double disc rotor-seal system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(1): 39-52.
[10] Meng-ge Yu, Ji-ye Zhang, Wei-hua Zhang. Multi-objective optimization design method of the high-speed train head[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 631-641.
[11] Tian Li, Ji-ye Zhang, Wei-hua Zhang. A numerical approach to the interaction between airflow and a high-speed train subjected to crosswind[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(7): 482-493.
[12] Li Zhou, Zhi-yun Shen. Dynamic analysis of a high-speed train operating on a curved track with failed fasteners[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(6): 447-458.
[13] Zhong-xiu Fei, Shui-guang Tong, Chao Wei. Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(4): 268-280.
[14] Y. Faradjian Mohtaram, J. Taheri Kahnamouei, M. Shariati, B. Behjat. Experimental and numerical investigation of buckling in rectangular steel plates with groove-shaped cutouts[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 469-480.
[15] Zhen Liu, Xiong (Bill) Yu, Jun-liang Tao, Ye Sun. Multiphysics extension to physically based analyses of pipes with emphasis on frost actions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(11): 877-887.