Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2014, Vol. 15 Issue (3): 172-184    DOI: 10.1631/jzus.A1300328
Mechanical Engineering and Mechanics     
An efficient adaptive finite element method algorithm with mass conservation for analysis of liquid face seals
Xiang-kai Meng, Shao-xian Bai, Xu-dong Peng
Institute of Chemical Process Machinery, Zhejiang University of Technology, Hangzhou 310032, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  To improve lubrication effect and seal performance, complicated geometrical hydrodynamic grooves or patterns are often processed on end faces of liquid lubricated mechanical seals. These structures can lead to difficulties in precisely estimating the seal performance. In this study, an efficient adaptive finite element method (FEM) algorithm with mass conservation was presented, in which a streamline upwind/Petrov-Galerkin (SUPG) weighted residual FEM and a fast iteration algorithm were applied to solve the lubrication equations (Reynolds equation). A mesh adaptation technique was utilized to refine the computation domain based on a residual posterior error estimator. Validation, applicability, and efficiency were verified by comparison among different algorithms and by case studies on seals’ faces with different groove structures. The study investigated the influence of the order of shape function and the mesh number on the leakage balance. Mesh refinement occurred mainly in cavitation zones when cavitation happened, otherwise it occurred in regions with a high pressure gradient. Numerical experiments verified that the proposed algorithm is a fast, effective, and accurate method to simulate lubrication problems in the engineering field apart from end face seals.

Key wordsCavitation      Finite element method (FEM)      End face seals      Streamline upwind/Petrov-Galerkin (SUPG)      Mass conservation     
Received: 10 October 2013      Published: 04 March 2014
CLC:  TH117.2  
Cite this article:

Xiang-kai Meng, Shao-xian Bai, Xu-dong Peng. An efficient adaptive finite element method algorithm with mass conservation for analysis of liquid face seals. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(3): 172-184.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1300328     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2014/V15/I3/172

[1] Jin-yuan Qian, Bu-zhan Liu, Zhi-jiang Jin, Jian-kai Wang, Han Zhang, An-le Lu. Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1): 54-64.
[2] Wen-jie Zhou, Xue-song Wei, Xian-zhu Wei, Le-qin Wang. Numerical analysis of a nonlinear double disc rotor-seal system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(1): 39-52.
[3] Zhen-peng He, Jun-hong Zhang, Zhou-yu Li, Lin Ba, Gui-chang Zhang, Kai-nan Wang, Xing Lu. Inter-asperity cavitation for misalignment journal lubrication problem based on mass-conservative algorithm[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 642-656.
[4] Zhong-xiu Fei, Shui-guang Tong, Chao Wei. Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(4): 268-280.
[5] Y. Faradjian Mohtaram, J. Taheri Kahnamouei, M. Shariati, B. Behjat. Experimental and numerical investigation of buckling in rectangular steel plates with groove-shaped cutouts[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 469-480.
[6] Zhen Liu, Xiong (Bill) Yu, Jun-liang Tao, Ye Sun. Multiphysics extension to physically based analyses of pipes with emphasis on frost actions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(11): 877-887.
[7] Heng Yuan, Kyu-jin Kim, Won-seok Kang, Byoung-ho Kang, Se-hyuk Yeom, Jae-ho Kim, Shin-won Kang. High-efficiency technique based on dielectrophoresis for assembling metal, semiconductor, and polymer nanorods[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(5): 368-373.
[8] Cheng Huang, Yan Bao, Dai Zhou, Jin-quan Xu. Large eddy simulation for wind field analysis based on stabilized finite element method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(4): 278-290.
[9] Su-qing Huang, Ju Chen, Wei-liang Jin. Numerical investigation and design of thin-walled complex section steel columns[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(2): 131-138.
[10] Cheng Huang, Dai Zhou, Yan Bao. A semi-implicit three-step method based on SUPG finite element formulation for flow in lid driven cavities with different geometries[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(1): 33-45.
[11] Wei Li, Yi Yang, De-ren Sheng, Jian-hong Chen, Yong-qiang Che. Nonlinear dynamic analysis of a rotor/bearing/seal system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(1): 46-55.
[12] Ling-fei MO, Hong-jian ZHANG, Hong-liang ZHOU. Analysis of dipole-like ultra high frequency RFID tags close to metallic surfaces[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1217-1222.
[13] B. HEMMATIAN, B. VAHIDI, S. H. HOSSEINIAN. Earth return path impedances of underground cable for three-layer earth[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1191-1198.
[14] Zhang-rong ZHAO, Yi-jie WU, Xin-jian GU, Lei ZHANG, Ji-feng YANG. Multi-physics coupling field finite element analysis on giant magnetostrictive materials smart component[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(5): 653-660.
[15] Qing-feng LI, Jin XIAO, Zhen HUANG. Flat-type permanent magnet linear alternator: A suitable device for a free piston linear alternator[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(3): 345-352.