|
A morphing machining strategy for artificial bone
Wen-feng Gan, Jian-zhong Fu, Hong-yao Shen, Zhi-wei Lin
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(3): 157-171.
https://doi.org/10.1631/jzus.A1300274
In this work, a novel morphing machining strategy (MMS) is proposed. In the method, the workpiece is progressively carved out from the stock. Pitfalls in conventional iso-height strategy, such as sharp edges and unevenly distributed left-over materials, are overcome. Moreover, to calculate different levels in the MMS, an energy-based morphing algorithm is proposed. Finally, the proposed strategy is employed in the machining of artificial bone represented by a T-spline surface. The excellent properties of T-spline, such as expressing complex shapes with a single surface, have been well adopted to artificial bone fabrication. Computer simulation and the actual machining of the middle finger bone show the feasibility of the proposed strategy.
|
|
An efficient adaptive finite element method algorithm with mass conservation for analysis of liquid face seals
Xiang-kai Meng, Shao-xian Bai, Xu-dong Peng
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(3): 172-184.
https://doi.org/10.1631/jzus.A1300328
To improve lubrication effect and seal performance, complicated geometrical hydrodynamic grooves or patterns are often processed on end faces of liquid lubricated mechanical seals. These structures can lead to difficulties in precisely estimating the seal performance. In this study, an efficient adaptive finite element method (FEM) algorithm with mass conservation was presented, in which a streamline upwind/Petrov-Galerkin (SUPG) weighted residual FEM and a fast iteration algorithm were applied to solve the lubrication equations (Reynolds equation). A mesh adaptation technique was utilized to refine the computation domain based on a residual posterior error estimator. Validation, applicability, and efficiency were verified by comparison among different algorithms and by case studies on seals’ faces with different groove structures. The study investigated the influence of the order of shape function and the mesh number on the leakage balance. Mesh refinement occurred mainly in cavitation zones when cavitation happened, otherwise it occurred in regions with a high pressure gradient. Numerical experiments verified that the proposed algorithm is a fast, effective, and accurate method to simulate lubrication problems in the engineering field apart from end face seals.
|
|
Evaluation of a multi-site weather generator in simulating precipitation in the Qiantang River Basin, East China
Yue-ping Xu, Chong Ma, Su-li Pan, Qian Zhu, Qi-hua Ran
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(3): 219-230.
https://doi.org/10.1631/jzus.A1300267
Recent years have seen a surge in assessment of potential impacts of climate change. As one of the most important tools for generating synthetic hydrological model inputs, weather generators have played an important role in climate change impact analysis of water management. However, most weather generators like statistical downscaling model (SDSM) and long Ashton research station weather generator (LARS-WG) are designed for single site data generation. Considering the significance of spatial correlations of hydro-meteorological data, multi-site weather data generation becomes a necessity. In this study we aim to evaluate the performance of a new multi-site stochastic model, geo-spatial temporal weather generator (GiST), in simulating precipitation in the Qiantang River Basin, East China. The correlation matrix, precipitation amount and occurrence of observed and GiST-generated data are first compared for the evaluation process. Then we use the GiST model combined with the change factor method (CFM) to investigate future changes of precipitation (2071–2100) in the study area using one global climate model, Hadgem2_ES, and an extreme emission scenario RCP 8.5. The final results show that the simulated precipitation amount and occurrence by GiST matched their historical counterparts reasonably. The correlation coefficients between simulated and historical precipitations show good consistence as well. Compared with the baseline period (1961–1990), precipitation in the future time period (2071–2100) at high elevation stations will probably increase while at other stations decreases will occur. This study implies potential application of the GiST stochastic model in investigating the impact of climate change on hydrology and water resources.
|
6 articles
|