Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2012, Vol. 13 Issue (6): 469-480    DOI: 10.1631/jzus.A1100226
Mechanics and Mechanical Engineering     
Experimental and numerical investigation of buckling in rectangular steel plates with groove-shaped cutouts
Y. Faradjian Mohtaram, J. Taheri Kahnamouei, M. Shariati, B. Behjat
Mechanical Department, Islamic Azad University, Bostan Abad Branch, Iran; Mechanical Department, Shahrood University of Technology, Shahrood, Iran; Mechanical Department, Sahand University of Technology, Tabriz, Iran
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Steel plates are widely used in various structures, such as the deck and bodies of ships and bridges, and in the aerospace industry. In many instances, these plates are subjected to axial compression loads that predispose the sheets to instability and buckling. In this study, we investigate the buckling and post-buckling behaviors of steel plates having groove-shaped cutouts of various dimensions and angles using finite element method (FEM) (by ABAQUS software) and experimental tests (by an Instron servohydraulic machine). Boundary conditions were clamped by supports at upper and lower ends and free supports at the other edges. The results of both numerical and experimental analyses are compared, which show a very good agreement between them. Finally, based on the experimental findings, formulas are presented for the determination of the buckling load of such plates.

Key wordsBuckling      Steel plates      Cutout      Experimental analysis      Finite element method (FEM)     
Received: 18 October 2011      Published: 04 June 2012
CLC:  O343  
Cite this article:

Y. Faradjian Mohtaram, J. Taheri Kahnamouei, M. Shariati, B. Behjat. Experimental and numerical investigation of buckling in rectangular steel plates with groove-shaped cutouts. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 469-480.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1100226     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2012/V13/I6/469

[1] Qing-shuai Cao, Yang Zhao. Buckling design of large steel silos with various slendernesses[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(4): 282-305.
[2] Zi-qin Jiang, Yan-lin Guo, Ai-lin Zhang, Chao Dou, Cai-xia Zhang. Experimental study of the pinned double rectangular tube assembled buckling-restrained brace[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 20-32.
[3] Zi-qin Jiang, Yan-lin Guo, Xiao-an Wang, Bin Huang. Design method of the pinned external integrated buckling-restrained braces with extended core. Part I: theoretical derivation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(10): 781-792.
[4] Zi-qin Jiang, Yan-lin Guo, Jing-zhong Tong, Xing Yuan. Design method of the pinned external integrated buckling-restrained braces with extended core. Part II: finite element numerical verification[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(10): 793-804.
[5] Xiang-kai Meng, Shao-xian Bai, Xu-dong Peng. An efficient adaptive finite element method algorithm with mass conservation for analysis of liquid face seals[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(3): 172-184.
[6] Wen-jie Zhou, Xue-song Wei, Xian-zhu Wei, Le-qin Wang. Numerical analysis of a nonlinear double disc rotor-seal system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(1): 39-52.
[7] Zhong-xiu Fei, Shui-guang Tong, Chao Wei. Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(4): 268-280.
[8] Su-deok Shon, Seung-jae Lee, Kang-guk Lee. Characteristics of bifurcation and buckling load of space truss in consideration of initial imperfection and load mode[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(3): 206-218.
[9] Chu-lin Yu, Zhi-ping Chen, Ji Wang, Shun-juan Yan, Li-cai Yang. Effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(2): 79-90.
[10] Zhen Liu, Xiong (Bill) Yu, Jun-liang Tao, Ye Sun. Multiphysics extension to physically based analyses of pipes with emphasis on frost actions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(11): 877-887.
[11] Syed Muhammad Ibrahim, Erasmo Carrera, Marco Petrolo, Enrico Zappino. Buckling of thin-walled beams by a refined theory[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(10): 747-759.
[12] Heng Yuan, Kyu-jin Kim, Won-seok Kang, Byoung-ho Kang, Se-hyuk Yeom, Jae-ho Kim, Shin-won Kang. High-efficiency technique based on dielectrophoresis for assembling metal, semiconductor, and polymer nanorods[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(5): 368-373.
[13] Cheng Huang, Yan Bao, Dai Zhou, Jin-quan Xu. Large eddy simulation for wind field analysis based on stabilized finite element method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(4): 278-290.
[14] Su-qing Huang, Ju Chen, Wei-liang Jin. Numerical investigation and design of thin-walled complex section steel columns[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(2): 131-138.
[15] Cheng Huang, Dai Zhou, Yan Bao. A semi-implicit three-step method based on SUPG finite element formulation for flow in lid driven cavities with different geometries[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(1): 33-45.