Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2016, Vol. 17 Issue (1): 54-64    DOI: 10.1631/jzus.A1500228
    
Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements
Jin-yuan Qian1,Bu-zhan Liu1,Zhi-jiang Jin1,(),Jian-kai Wang2,Han Zhang3,An-le Lu3
1 Institute of Process Equipment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
2 China Tianchen Engineering Corporation, Tianjin 300400, China
3 Shanghai Nuclear Engineering Research and Design Institute, Shanghai 200233, China
Download: HTML     PDF(614KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The pilot-control globe valve (PCGV) is a novel globe valve with a piston-type valve core and a small pilot valve. It can utilize a pressure difference to control the state of the main valve by the pilot valve. In this paper, a mathematical model of PCGV is established and a computational fluid dynamics (CFD) method is used to numerically simulate its flow and cavitation characteristics. Analysis of the pressure difference between the upside and downside of the valve core and comparison with similar previous work increase the reliability of the simulation. Then an analysis of flow and cavitation characteristics is carried out with three comparisons: a comparison between opened and closed states, a comparison between different inlet velocities, and a comparison between different valve core displacements. The results demonstrate that the vapor volume fraction reaches its peak point at the valve seat near the outlet tube, and that a higher inlet velocity or smaller valve core displacement can cause greater cavitation damage. This study can help further design work for optimization and engineering applications of PCGV.



Key wordsComputational fluid dynamics (CFD)      Pilot-control globe valve (PCGV)      Valve core displacement      Cavitation     
Received: 17 August 2015      Published: 06 January 2016
Fund:  the National Natural Science Foundation of China(No. 51175454);the Key Scientific and Technological Innovation Team of Zhejiang Province, China(No. 2011R50005);the Special Major Science and Technology Project of Zhejiang Province, China(No. 2012C11018-1, 2012C11002)
Corresponding Authors: Zhi-jiang Jin     E-mail: jzj@zju.edu.cn
Cite this article:

Jin-yuan Qian,Bu-zhan Liu,Zhi-jiang Jin,Jian-kai Wang,Han Zhang,An-le Lu. Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1): 54-64.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1500228     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2016/V17/I1/54

Fig. 1 Pilot-control globe valve and its key parts
Fig. 2 Mesh of PCGV with valve core displacement of 25 mm
Interval size (mm) Pressure difference (kPa)
10 189.2
8 169.1
6 163.4
4 163.1
2 162.9
Table 1 Pressure difference under different interval size
Valve core displacement (mm) Opened pressure difference (kPa) Closed pressure difference (kPa)
5 163.4 30.4
10 69.9 10.1
15 32.1 7.5
20 24.5 6.0
25 18.3 4.2
Table 2 Pressure difference under different valve core displacement
Fig. 3 Fluid force under different valve core displacements when inlet velocity is 3 m/s
Fig. 4 Velocity contours under opened and closed states with valve core displacement of 25 mm, inlet velocity of 3 m/s (a) Symmetrical, opened; (b) Longitudinal, opened; (c) Symmetrical, closed; (d) Longitudinal, closed (unit: m/s)
Fig. 5 Vapor volume fraction contours under opened and closed states with valve core displacement of 25 mm, inlet velocity of 3 m/s (a) Symmetrical, opened; (b) Longitudinal, opened; (c) Symmetrical, closed; (d) Longitudinal, closed (unit: %)
Fig. 6 Pressure, velocity, and vapor volume fraction contours under closed states with inlet velocities of 2 m/s and 4 m/s (a) Pressure, 2 m/s; (b) Pressure, 4 m/s; (c) Velocity, 2 m/s; (d) Velocity, 4 m/s; (e) Vapor volume fraction, 2 m/s; (f) Vapor volume fraction, 4 m/s. The units of pressure, velocity, and vapor volume fraction are Pa, m/s, and %, respectively
Fig. 7 Pressure, velocity, and vapor volume fraction contours under opened states with valve core displacements of 10 mm and 20 mm (a) Pressure, 10 mm; (b) Pressure, 20 mm; (c) Velocity, 10 mm; (d) Velocity, 20 mm; (e) Vapor volume fraction, 10 mm; (f) Vapor volume fraction, 20 mm. The units of pressure, velocity, and vapor volume fraction are Pa, m/s, and %, respectively
[1]   Adamkowski A, Lewandowski M . Cavitation characteristics of shutoff valves in numerical modeling of transients in pipelines with column separation. Journal of Hydraulic Engineering. 2015, 141(2): 04014077 doi: 10.1061/(ASCE)HY.1943-7900.0000971
doi: 10.1061/(ASCE)HY.1943-7900.0000971
[2]   Amirante R, Distaso E, Tamburrano P . Experimental and numerical analysis of cavitation in hydraulic proportional directional valves. Energy Conversion and Management. 2014, 87: 208-219 doi: 10.1016/j.enconman.2014.07.031
doi: 10.1016/j.enconman.2014.07.031
[3]   An YJ, Kim BJ, Shin BR . Numerical analysis of 3-D flow through LNG marine control valves for their advanced design. Journal of Mechanical Science and Technology. 2008, 22(10): 1998-2005 doi: 10.1007/s12206-008-0745-6
doi: 10.1007/s12206-008-0745-6
[4]   Aung NZ, Li S . A numerical study of cavitation phenomenon in a flapper-nozzle pilot stage of an electrohydraulic servo-valve with an innovative flapper shape. Energy Conversion and Management. 2014, 77: 31-39 doi: 10.1016/j.enconman.2013.09.009
doi: 10.1016/j.enconman.2013.09.009
[5]   Aung NZ, Yang Q, Chen M et al. CFD analysis of flow forces and energy loss characteristics in a flapper-nozzle pilot valve with different null clearances. Energy Conversion and Management. 2014, 83: 284-295 doi: 10.1016/j.enconman.2014.03.076
doi: 10.1016/j.enconman.2014.03.076
[6]   Bernad SI, Susan-Resiga R . Numerical model for cavitational flow in hydraulic poppet valves. Modelling and Simulation in Engineering. 2012, 2012: 742162 doi: 10.1155/2012/742162
doi: 10.1155/2012/742162
[7]   Chattopadhyay H, Kundu A, Saha BK et al. Analysis of flow structure inside a spool type pressure regulating valve. Energy Conversion and Management. 2012, 53(1): 196-204 doi: 10.1016/j.enconman.2011.08.021
doi: 10.1016/j.enconman.2011.08.021
[8]   Chern M, Hsu P, Cheng Y et al. Numerical study on cavitation occurrence in globe valve. Journal of Energy Engineering. 2013, 139(1): 25-34 doi: 10.1061/(ASCE)EY.1943-7897.0000084
doi: 10.1061/(ASCE)EY.1943-7897.0000084
[9]   Dossena V, Marinoni F, Bassi F et al. Numerical and experimental investigation on the performance of safety valves operating with different gases. International Journal of Pressure Vessels and Piping. 2013, 104: 21-29 doi: 10.1016/j.ijpvp.2013.01.002
doi: 10.1016/j.ijpvp.2013.01.002
[10]   Fu L, Wei J, Qiu M . Dynamic characteristics of large flow rating electro-hydraulic proportional cartridge valve. Chinese Journal of Mechanical Engineering (English Edition). 2008, 21(06): 57-62 doi: 10.3901/CJME.2008.06.057
doi: 10.3901/CJME.2008.06.057
[11]   Fu X, Du X, Zou J et al. Characteristics of flow through throttling valve undergoing a steep pressure gradient. International Journal of Fluid Power. 2007, 8(1): 29-37 doi: 10.1080/14399776.2007.10781265
doi: 10.1080/14399776.2007.10781265
[12]   Gao H, Fu X, Yang HY et al. Numerical investigation of cavitating flow behind the cone of a poppet valve in water hydraulic system. Journal of Zhejiang University-SCIENCE. 2002, 3(4): 395-400 doi: 10.1631/jzus.2002.0395
doi: 10.1631/jzus.2002.0395
[13]   Gholami H, Yaghoubi H, Alizadeh M . Numerical analysis of cavitation phenomenon in a vaned ring-type needle valve. Journal of Energy Engineering. 2014, 141(4): 04014053 doi: 10.1061/(ASCE)EY.1943-7897.0000255
doi: 10.1061/(ASCE)EY.1943-7897.0000255
[14]   Håkansson A, Fuchs L, Innings F et al. Experimental validation of kε RANS-CFD on a high-pressure homogenizer valve. Chemical Engineering Science. 2012, 71: 264-273 doi: 10.1016/j.ces.2011.12.039
doi: 10.1016/j.ces.2011.12.039
[15]   Jazi AM, Rahimzadeh H . Waveform analysis of cavitation in a globe valve. Ultrasonics. 2009, 49(6-7): 577-582 doi: 10.1016/j.ultras.2009.02.004
doi: 10.1016/j.ultras.2009.02.004
[16]   Jin ZJ, Wei L, Chen LL et al. Numerical simulation and structure improvement of double throttling in a high parameter pressure reducing valve. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering). 2013, 14(2): 137-146 doi: 10.1631/jzus.A1200146
doi: 10.1631/jzus.A1200146
[17]   Mao J, Wang W, Zhang J et al. Numerical investigation on the dynamic behaviors of turbine valve disc-seat impact at low velocity. Journal of Mechanical Science and Technology. 2015, 29(2): 507-515 doi: 10.1007/s12206-015-0111-4
doi: 10.1007/s12206-015-0111-4
[18]   Margot X, Hoyas S, Gil A et al. Numerical modelling of cavitation: validation and parametric studies. Engineering Applications of Computational Fluid Mechanics. 2012, 6(1): 15-24 doi: 10.1080/19942060.2012.11015399
doi: 10.1080/19942060.2012.11015399
[19]   Palau-Salvador G, Gonzalez-Altozano P, Arviza-Valverde J . Three-dimensional modeling and geometrical influence on the hydraulic performance of a control valve. Journal of Fluids Engineering. 2008, 130(1): 011102 doi: 10.1115/1.2813131
doi: 10.1115/1.2813131
[20]   Qian JY, Wei L, Jin ZJ et al. CFD analysis on the dynamic flow characteristics of the pilot-control globe valve. Energy Conversion and Management. 2014, 87: 220-226 doi: 10.1016/j.enconman.2014.07.018
doi: 10.1016/j.enconman.2014.07.018
[21]   Saha BK, Chattopadhyay H, Mandal PB et al. Dynamic simulation of a pressure regulating and shut-off valve. Computers & Fluids. 2014, 101: 233-240 doi: 10.1016/j.compfluid.2014.06.011
doi: 10.1016/j.compfluid.2014.06.011
[22]   Simic M, Herakovic N . Reduction of the flow forces in a small hydraulic seat valve as alternative approach to improve the valve characteristics. Energy Conversion and Management. 2015, 89: 708-718 doi: 10.1016/j.enconman.2014.10.037
doi: 10.1016/j.enconman.2014.10.037
[23]   Song X, Cui L, Cao M et al. A CFD analysis of the dynamics of a direct-operated safety relief valve mounted on a pressure vessel. Energy Conversion and Management. 2014, 81: 407-419 doi: 10.1016/j.enconman.2014.02.021
doi: 10.1016/j.enconman.2014.02.021
[24]   Valdés JR, Rodríguez JM, Monge R et al. Numerical simulation and experimental validation of the cavitating flow through a ball check valve. Energy Conversion and Management. 2014, 78: 776-786 doi: 10.1016/j.enconman.2013.11.038
doi: 10.1016/j.enconman.2013.11.038
[25]   Yaghoubi H, Adib AA, Madani S et al. A numerical analysis of cavitation phenomenon in a globe valve with different numbers of anti-cavitation trims. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), in press http://dxdoiorg/101631/jzusA1400258. 2015
[1] Dong-fang Hu, Zheng-liang Huang, Jing-yuan Sun, Jing-dai Wang, Zu-wei Liao, Bin-bo Jiang, Jian Yang, Yong-rong Yang. Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(3): 212-224.
[2] Zheng Tan, Xue-guan Song, Bing Ji, Zheng Liu, Ji-en Ma, Wen-ping Cao. 3D thermal analysis of a permanent magnet motor with cooling fans[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 616-621.
[3] Wei-yun Shao, Li-jie Jiang, Lei Fang, David Z. Zhu, Zhi-lin Sun. Assessment of the safe evacuation of people walking through flooding staircases based on numerical simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(2): 117-130.
[4] Xiang-kai Meng, Shao-xian Bai, Xu-dong Peng. An efficient adaptive finite element method algorithm with mass conservation for analysis of liquid face seals[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(3): 172-184.
[5] Zhen-peng He, Jun-hong Zhang, Zhou-yu Li, Lin Ba, Gui-chang Zhang, Kai-nan Wang, Xing Lu. Inter-asperity cavitation for misalignment journal lubrication problem based on mass-conservative algorithm[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 642-656.
[6] Yu-qi Huang, Rui Huang, Xiao-li Yu, Feng Lv. Simulation, experimentation, and collaborative analysis of adjacent heat exchange modules in a vehicular cooling system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(6): 417-426.
[7] Ji-feng Wang, Janusz Piechna, Norbert Müller. Numerical investigation of the power generation of a ducted composite material marine current turbine[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(1): 25-30.
[8] Lian-yun Liu, Zhi-yong Hao, Chi Liu. CFD analysis of a transfer matrix of exhaust muffler with mean flow and prediction of exhaust noise[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(9): 709-716.
[9] Hai-yun Zhang, Jin Wang, Guo-dong Lu. Numerical investigation of the influence of companion drops on drop-on-demand ink jetting[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(8): 584-595.
[10] Dennis Y. C. Leung, W. Y. Lo, W. Y. Chow, P. W. Chan. Effect of terrain and building structures on the airflow in an airport[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 461-468.
[11] Qiang Li, Shu-lian Liu, Xiao-hong Pan, Shui-ying Zheng. A new method for studying the 3D transient flow of misaligned journal bearings in flexible rotor-bearing systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(4): 293-310.
[12] Zhuo-dong Zhang, Ralf Wieland, Matthias Reiche, Roger Funk, Carsten Hoffmann, Yong Li, Michael Sommer. A computational fluid dynamics model for wind simulation: model implementation and experimental validation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(4): 274-283.
[13] Xiao-wen Song, Guo-geng Zhang, Yun Wang, Shu-gen Hu. Use of bionic inspired surfaces for aerodynamic drag reduction on motor vehicle body panels[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(7): 543-551.
[14] Young T. Chae, Kwang Ho Lee, Jae Sung Park. Improved thermal performance of a hydronic radiant panel heating system by the optimization of tube shapes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(6): 428-437.
[15] Chun-ho Liu, Dennis Y. C. Leung, Alex C. S. Man, P. W. Chan. Computational fluid dynamics simulation of the wind flow over an airport terminal building[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(6): 389-401.