Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2012, Vol. 13 Issue (6): 461-468    DOI: 10.1631/jzus.A1100293
Mechanics and Mechanical Engineering     
Effect of terrain and building structures on the airflow in an airport
Dennis Y. C. Leung, W. Y. Lo, W. Y. Chow, P. W. Chan
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; Hong Kong Observatory, Hong Kong, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The aim of this study was to perform computational fluid dynamics (CFD) simulations on the airflows at the Hong Kong International Airport (HKIA). In particular, the effects of hangar buildings and terrain were studied to explore the effects of turbulence on flying aircraft, especially during landing. The CFD simulation showed that significant differences in wind speeds may occur between the north and the south runways on the western part of the HKIA under typhoon conditions with a strong north to northwesterly wind. Simulation also showed that the hanger buildings between the two runways on the western side and the nearby terrain could be causing the observed difference in the wind speeds. The results also indicated that these obstacles could cause significant wind speed variations at the western end of the south runway. This may affect the operation of landing aircraft. The CFD results for a typical typhoon case were analyzed and found to match the wind data recorded by an aircraft landing that day.

Key wordsComputational fluid dynamics (CFD)      Hong Kong International Airport (HKIA)      Low-level wind effect      Hangars      Terrain     
Received: 31 October 2011      Published: 04 June 2012
CLC:  O35  
Cite this article:

Dennis Y. C. Leung, W. Y. Lo, W. Y. Chow, P. W. Chan. Effect of terrain and building structures on the airflow in an airport. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 461-468.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1100293     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2012/V13/I6/461

[1] Dong-fang Hu, Zheng-liang Huang, Jing-yuan Sun, Jing-dai Wang, Zu-wei Liao, Bin-bo Jiang, Jian Yang, Yong-rong Yang. Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(3): 212-224.
[2] Jin-yuan Qian, Bu-zhan Liu, Zhi-jiang Jin, Jian-kai Wang, Han Zhang, An-le Lu. Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1): 54-64.
[3] Zheng Tan, Xue-guan Song, Bing Ji, Zheng Liu, Ji-en Ma, Wen-ping Cao. 3D thermal analysis of a permanent magnet motor with cooling fans[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 616-621.
[4] Wei-yun Shao, Li-jie Jiang, Lei Fang, David Z. Zhu, Zhi-lin Sun. Assessment of the safe evacuation of people walking through flooding staircases based on numerical simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(2): 117-130.
[5] Yu-qi Huang, Rui Huang, Xiao-li Yu, Feng Lv. Simulation, experimentation, and collaborative analysis of adjacent heat exchange modules in a vehicular cooling system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(6): 417-426.
[6] Ji-feng Wang, Janusz Piechna, Norbert Müller. Numerical investigation of the power generation of a ducted composite material marine current turbine[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(1): 25-30.
[7] Lian-yun Liu, Zhi-yong Hao, Chi Liu. CFD analysis of a transfer matrix of exhaust muffler with mean flow and prediction of exhaust noise[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(9): 709-716.
[8] Hai-yun Zhang, Jin Wang, Guo-dong Lu. Numerical investigation of the influence of companion drops on drop-on-demand ink jetting[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(8): 584-595.
[9] Zhuo-dong Zhang, Ralf Wieland, Matthias Reiche, Roger Funk, Carsten Hoffmann, Yong Li, Michael Sommer. A computational fluid dynamics model for wind simulation: model implementation and experimental validation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(4): 274-283.
[10] Qiang Li, Shu-lian Liu, Xiao-hong Pan, Shui-ying Zheng. A new method for studying the 3D transient flow of misaligned journal bearings in flexible rotor-bearing systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(4): 293-310.
[11] Xiao-wen Song, Guo-geng Zhang, Yun Wang, Shu-gen Hu. Use of bionic inspired surfaces for aerodynamic drag reduction on motor vehicle body panels[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(7): 543-551.
[12] Young T. Chae, Kwang Ho Lee, Jae Sung Park. Improved thermal performance of a hydronic radiant panel heating system by the optimization of tube shapes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(6): 428-437.
[13] Chun-ho Liu, Dennis Y. C. Leung, Alex C. S. Man, P. W. Chan. Computational fluid dynamics simulation of the wind flow over an airport terminal building[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(6): 389-401.
[14] Yu-qi HUANG, Xiao-li YU, Guo-dong LU. Numerical simulation and optimization design of the EGR cooler in vehicle[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(9): 1270-1276.
[15] Jun LI, Ying-wei KANG, Guang-yi CAO, Xin-jian ZHU, Heng-yong TU, Jian LI. Numerical simulation of a direct internal reforming solid oxide fuel cell using computational fluid dynamics method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(7): 961-969.