Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2012, Vol. 13 Issue (11): 836-849    DOI: 10.1631/jzus.A12ISGT3
Articles     
Application of polyurethane geocomposites to help maintain track geometry for high-speed ballasted railway tracks
Peter Keith Woodward, Abdellah El Kacimi, Omar Laghrouche, Gabriela Medero, Meysam Banimahd
Institute for Infrastructure and Environment, School of the Built Environment, Heriot-Watt University, Edinburgh, EH14 4AS, UK
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  There are many issues surrounding the performance of critical assets on high-speed ballasted railway lines. At assets like switch & crossings and bridge transitions high track forces can be produced resulting in higher ballast settlements and hence track misalignments. The latter result in higher track forces and hence more settlement, leading to the need for increased track maintenance to ensure comfort and safety. Current technologies for solving issues like ballast movement under high-speed loading regimes are limited. However, a technique that has been well used across the UK and now increasingly overseas to stabilise and reinforce ballasted railway tracks is the application of in-situ polyurethane polymers, termed XiTRACK. This paper discusses how this technique can be used to solve these types of long-standing issues and presents actual polymer application profiles at two typical critical sites, namely a junction and a transition onto concrete slab-track.

Key wordsRailways      Polyurethanes      Geocomposites      Modelling      High-speed     
Received: 04 September 2012      Published: 25 October 2012
CLC:  U214.9+9  
Cite this article:

Peter Keith Woodward, Abdellah El Kacimi, Omar Laghrouche, Gabriela Medero, Meysam Banimahd. Application of polyurethane geocomposites to help maintain track geometry for high-speed ballasted railway tracks. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(11): 836-849.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A12ISGT3     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2012/V13/I11/836

[1] Hua-yong Yang, Min Pan. Engineering research in fluid power: a review[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(6): 427-442.
[2] Yifei He, Joseph K. Davidson, Jami J. Shah. Tolerance-Maps for line-profiles constructed from Boolean intersection of T-Map primitives for arc-segments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(5): 341-352.
[3] Jian Han, Guo-tang Zhao, Xin-biao Xiao, Ze-feng Wen, Qing-hua Guan, Xue-song Jin. Effect of softening of cement asphalt mortar on vehicle operation safety and track dynamics[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(12): 976-986.
[4] Satoru Sone. Comparison of the technologies of the Japanese Shinkansen and Chinese High-speed Railways[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(10): 769-780.
[5] Xin-biao Xiao, Liang Ling, Jia-yang Xiong, Li Zhou, Xue-song Jin. Study on the safety of operating high-speed railway vehicles subjected to crosswinds[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(9): 694-710.
[6] Shuo-qiao Zhong, Jia-yang Xiong, Xin-biao Xiao, Ze-feng Wen, Xue-song Jin. Effect of the first two wheelset bending modes on wheel-rail contact behavior[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 984-1001.
[7] Jie Zhang, Guang-xu Han, Xin-biao Xiao, Rui-qian Wang, Yue Zhao, Xue-song Jin. Influence of wheel polygonal wear on interior noise of high-speed trains[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 1002-1018.
[8] Bin He, Xin-biao Xiao, Qiang Zhou, Zhi-hui Li, Xue-song Jin. Investigation into external noise of a high-speed train at different speeds[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 1019-1033.
[9] Ren-peng Chen, Jin-miao Chen, Han-lin Wang. Recent research on the track-subgrade of high-speed railways[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 1034-1038.
[10] Liang Ling, Xin-biao Xiao, Jia-yang Xiong, Li Zhou, Ze-feng Wen, Xue-song Jin. A 3D model for coupling dynamics analysis of high-speed train/track system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 964-983.
[11] Roderick A. Smith, Jing Zhou. Background of recent developments of passenger railways in China, the UK and other European countries[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 925-935.
[12] Xue-song Jin. Key problems faced in high-speed train operation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 936-945.
[13] Ngoc-Anh Do, Daniel Dias, Pierpaolo Oreste. Three-dimensional numerical simulation of mechanized twin stacked tunnels in soft ground[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(11): 896-913.
[14] Meng-ge Yu, Ji-ye Zhang, Wei-hua Zhang. Multi-objective optimization design method of the high-speed train head[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 631-641.
[15] Tian Li, Ji-ye Zhang, Wei-hua Zhang. A numerical approach to the interaction between airflow and a high-speed train subjected to crosswind[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(7): 482-493.